Skip to main content

Advertisement

Log in

The heparan sulphate deficient Hspg2 exon 3 null mouse displays reduced deposition of TGF-β1 in skin compared to C57BL/6 wild type mice

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

This was an observational study where we examined the role of perlecan HS on the deposition of TGF-β1 in C57BL/6 and Hspg2∆3−/∆3− perlecan exon 3 null mouse skin. Despite its obvious importance in skin repair and tissue homeostasis no definitive studies have immunolocalised TGF-β1 in skin in WT or Hspg2∆3−/∆3− perlecan exon 3 null mice. Vertical parasagittal murine dorsal skin from 3, 6 and 12 week old C57BL/6 and Hspg2∆3−/∆3− mice were fixed in neutral buffered formalin, paraffin embedded and 4 μm sections stained with Mayers haematoxylin and eosin (H & E). TGF-β1 was immunolocalised using a rabbit polyclonal antibody, heat retrieval and the Envision NovaRED detection system. Immunolocalisation of TGF-β1 differed markedly in C57BL/6 and Hspg2∆3−/∆3− mouse skin, ablation of exon 3 of Hspg2 resulted in a very severe reduction in the deposition of TGF-β1 in skin 3–12 weeks postnatally. The reduced deposition of TGF-β1 observed in the present study would be expected to impact detrimentally on the remodelling and healing capacity of skin in mutant mice compounding on the poor wound-healing properties already reported for perlecan exon 3 null mice due to an inability to signal with FGF-2 and promote angiogenic repair processes. TGF-β1 also has cell mediated effects in tissue homeostasis and matrix stabilisation a reduction in TGF-β1 deposition would therefore be expected to detrimentally impact on skin homeostasis in the perlecan mutant mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Caterson B (2012) Fell-Muir Lecture: chondroitin sulphate glycosaminoglycans: fun for some and confusion for others. Int J Exp Pathol 93(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulson-Thomas VJ, Gesteira TF, Esko J, Kao W (2014) Heparan sulfate regulates hair follicle and sebaceous gland morphogenesis and homeostasis. J Biol Chem 289(36):25211–25226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawicki W, Marshall JS (2007) New and emerging roles for mast cells in host defence. Curr Opin Immunol 19(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Gallagher JT, Turnbull JE (1992) Heparan sulphate in the binding and activation of basic fibroblast growth factor. Glycobiology 2(6):523–580

    Article  CAS  PubMed  Google Scholar 

  • Hayes AJ, Lord MS, Smith SM, Smith MM, Whitelock JM, Weiss AS, Melrose J (2011a) Colocalization in vivo and association in vitro of perlecan and elastin. Histochem Cell Biol 136(4):437–454. doi:10.1007/s00418-011-0854-7

    Article  CAS  PubMed  Google Scholar 

  • Hayes AJ, Smith SM, Gibson MA, Melrose J (2011b) Comparative immunolocalization of the elastin fiber-associated proteins fibrillin-1, LTBP-2, and MAGP-1 with components of the collagenous and proteoglycan matrix of the fetal human intervertebral disc. Spine (Phila Pa 1976) 36(21):E1365–E1372

    Article  Google Scholar 

  • Hayes AJ, Gibson MA, Shu C, Melrose J (2014) Confocal microscopy demonstrtaes association of LTBP-2 in fibrillin-1 microfibrils and colocalisation with perlecan in the disc cell pericellular matrix. Tissue Cell 46:185–197

    Article  CAS  PubMed  Google Scholar 

  • Iozzo RV, Schaefer L (2010) Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J 277(19):3864–3875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishijima M, Suzuki N, Hozumi K, Matsunobu T, Kosaki K, Kaneko H, Hassell JR, Arikawa-Hirasawa E, Yamada Y (2012) Perlecan modulates VEGF signaling and is essential for vascularization in endochondral bone formation. Matrix Biol 31(4):234–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, Charbonneau NL, Reinhardt DP, Rifkin DB, Sakai LY (2003) Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem 278(4):2750–2757

    Article  CAS  PubMed  Google Scholar 

  • Jung M, Lord MS, Cheng B, Lyons JG, Alkhouri H, Hughes JM, McCarthy SJ, Iozzo RV, Whitelock JM (2013) Mast cells produce novel shorter forms of perlecan that contain functional endorepellin: a role in angiogenesis and wound healing. J Biol Chem. doi:10.1074/jbc.M112.387811

    Google Scholar 

  • Kitoh A, Nomura T, Kabashima K (2013) TGF-beta 1, an epidermal controller of skin dendritic cell homeostasis. J Invest Dermatol 133:9–11

    Article  CAS  PubMed  Google Scholar 

  • Knox SM, Whitelock JM (2006) Perlecan: How does one molecule do so many things? Cell Mol Life Sci 63(21):2435–2445

    Article  CAS  PubMed  Google Scholar 

  • Knox S, Merry C, Stringer S, Melrose J, Whitelock J (2002) Not all perlecans are created equal interactions with fibroblast growth factor (FGF) 2 and FGF receptors. J Biol Chem 277(17):14657–14665

    CAS  PubMed  Google Scholar 

  • Knox S, Fosang AJ, Last K, Melrose J, Whitelock J (2005) Perlecan from human epithelial cells is a hybrid heparan/chondroitin/keratan sulfate proteoglycan. FEBS Lett 579(22):5019–5023

    Article  CAS  PubMed  Google Scholar 

  • Kolset SO, Tveit H (2008) Serglycin-structure and biology. Cell Mol Life Sci 65(7–8):1073–1085

    Article  CAS  PubMed  Google Scholar 

  • Lord MS, Chuang CY, Melrose J, Davies MJ, Iozzo RV, Whitelock JM (2014) The role of vascular-derived perlecan in modulating cell adhesion, proliferation and growth factor signaling. Matrix Biol 35:112–122

    Article  CAS  PubMed  Google Scholar 

  • Malaviya R, Ikeda T, Ross E, Abraham SN (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381(6577):77–80

    Article  CAS  PubMed  Google Scholar 

  • Massagué J, Xi Q (2012) TGF-β control of stem cell differentiation genes. FEBS Lett 586(14):1953–1958

    Article  PubMed  PubMed Central  Google Scholar 

  • Melrose J, Roughley P, Knox S, Smith S, Lord M, Whitelock J (2006) The structure, location, and function of perlecan, a prominent pericellular proteoglycan of fetal, postnatal, and mature hyaline cartilages. J Biol Chem 281(48):36905–36914

    Article  CAS  PubMed  Google Scholar 

  • Melrose J, Hayes AJ, Whitelock JM, Little CB (2008) Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. BioEssays 30(5):457–469

    Article  CAS  PubMed  Google Scholar 

  • Melrose J, Isaacs MD, Smith SM, Hughes CE, Little CB, Caterson B, Hayes AJ (2012) Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development. Histochem Cell Biol 138(3):461–475

    Article  CAS  PubMed  Google Scholar 

  • Neill T, Schaefer L, Iozzo RV (2012) Decorin: a guardian from the matrix. Am J Pathol 181(2):380–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neill T, Schaefer L, Iozzo RV (2015) Decoding the matrix: instructive roles of proteoglycan receptors. Biochemistry 54(30):4583–4598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivera-Martinez I, Viallet JP, Michon F, Pearton DJ, Dhouailly D (2004) The different steps of skin formation in vertebrates. Int J Dev Biol 48:107–115

    Article  CAS  PubMed  Google Scholar 

  • Rishikaysh P, Dev K, Diaz D, Qureshi WM, Filip S, Mokry J (2014) Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci 15(1):1647–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi M, Morita H, Sormunen R, Airenne S, Kreivi M, Wang L, Fukai N, Olsen BR, Tryggvason K, Soininen R (2003) Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J 22(2):236–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu CC, Jackson MT, Smith MM, Smith SM, Penm S, Lord MS, Whitelock JM, Little CB, Melrose J (2015) Perlecan domain I heparan sulfate ablation reduces progressive cartilage degradation, synovitis, and osteophyte size in post-traumatic osteoarthritis. Arthritis Rheumatol. doi:10.1002/art.39529

    Google Scholar 

  • Smith MM, Melrose J (2015) Proteoglycans in normal and healing skin. Adv Wound Care (New Rochelle) 4(3):152–173

    Article  Google Scholar 

  • Sporn MB, Roberts AB (1993) A major advance in the use of growth factors to enhance wound healing. J Clin Invest 92(6):2565–2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanimura S, Tadokoro Y, Inomata K, Binh NT, Nishie W, Yamazaki S, Nakauchi H, Tanaka Y, McMillan JR, Sawamura D, Yancey K, Shimizu H, Nishimura EK (2011) Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8(2):177–187

    Article  CAS  PubMed  Google Scholar 

  • Todorovic V, Rifkin DB (2012) LTBPs, more than just an escort service. J Cell Biochem 113(2):410–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitelock J, Melrose J (2011) Heparan sulfate proteoglycans in healthy and diseased systems. Wiley Interdiscip Rev Syst Biol Med 3(6):739–751

    Article  CAS  PubMed  Google Scholar 

  • Whitelock JM, Melrose J, Iozzo RV (2008) Diverse cell signaling events modulated by perlecan. Biochemistry 47(43):11174–11183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Wang J, Cao R, Morita H, Soininen R, Chan KM, Liu B, Cao Y, Tryggvason K (2004) Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulphate-deficient mice. Cancer Res 64(14):4699–4702

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NHMRC (Australia) Project Grant 1004032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Melrose.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest or financial disclosures to make.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, C., Smith, S.M. & Melrose, J. The heparan sulphate deficient Hspg2 exon 3 null mouse displays reduced deposition of TGF-β1 in skin compared to C57BL/6 wild type mice. J Mol Hist 47, 365–374 (2016). https://doi.org/10.1007/s10735-016-9677-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-016-9677-0

Keywords

Navigation