Skip to main content
Log in

GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

An Erratum to this article was published on 20 November 2007

Abstract

The neurotransmitter GABA exerts a strong negative influence on the production of adult-born olfactory bulb interneurons via tightly regulated, non-synaptic GABAergic signaling. After discussing some findings on GABAergic signaling in the neurogenic subventricular zone (SVZ), we provide data suggesting ambient GABA clearance via two GABA transporter subtypes and further support for a non-vesicular mechanism of GABA release from neuroblasts. While GABA works in cooperation with the neurotransmitter glutamate during embryonic cortical development, the role of glutamate in adult forebrain neurogenesis remains obscure. Only one of the eight metabotropic glutamate receptors (mGluRs), mGluR5, has been reported to tonically increase the number of proliferative SVZ cells in vivo, suggesting a local source of glutamate in the SVZ. We show here that glutamate antibodies strongly label subventricular zone (SVZ) astrocytes, some of which are stem cells. We also show that some SVZ neuroblasts express one of the ionotropic glutamate receptors, AMPA/kainate receptors, earlier than previously thought. Collectively, these findings suggest that neuroblast-to-astrocyte GABAergic signaling may cooperate with astrocyte-to-neuroblast glutamatergic signaling to provide strong homeostatic control on the production of adult-born olfactory bulb interneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altman J (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145:573–591

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–457

    Article  PubMed  CAS  Google Scholar 

  • Blakemore WF (1969) The ultrastructure of the subependymal plate in the rat. J Anat 104:423–433

    PubMed  CAS  Google Scholar 

  • Bolteus AJ, Bordey A (2004) GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J Neurosci 24:7623–7631

    Article  PubMed  CAS  Google Scholar 

  • Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–261

    Article  Google Scholar 

  • Braun N, Sevigny J, Mishra SK et al (2003a) Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur J Neurosci 17:1355–1364

    Article  PubMed  Google Scholar 

  • Braun N, Sevigny J, Mishra SK et al (2003b) Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur J Neurosci 17:1355–1364

    Article  PubMed  Google Scholar 

  • Brazel CY, Nunez JL, Yang Z, Levison SW (2005) Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 131:55–65

    Article  PubMed  CAS  Google Scholar 

  • Bryans WA (1959) Mitotic activity in the brain of the adult rat. Anat Rec 133:65–73

    Article  Google Scholar 

  • Cammack JN, Rakhilin SV, Schwartz EA (1994) A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron 13:949–960

    Article  PubMed  CAS  Google Scholar 

  • Cammack JN, Schwartz EA (1993) Ions required for the electrogenic transport of GABA by horizontal cells of the catfish retina. J Physiol (Lond) 472:81–102

    CAS  Google Scholar 

  • Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35:865–875

    Article  PubMed  Google Scholar 

  • Carleton A, Petreanu LT, Lansford R et al (2003) Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6:507–518

    PubMed  CAS  Google Scholar 

  • Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:889–907

    Article  PubMed  CAS  Google Scholar 

  • Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 19:4462–4471

    PubMed  CAS  Google Scholar 

  • Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  PubMed  CAS  Google Scholar 

  • Curtis MA, Kam M, Nannmark U et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Di Giorgi Gerevini V, Caruso A, Cappuccio I et al (2004) The mGlu5 metabotropic glutamate receptor is expressed in zones of active neurogenesis of the embryonic and postnatal brain. Brain Res Dev Brain Res 150:17–22

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Caille I, Lim DA et al (1999a) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1999b) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA 96:11619–11624

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    PubMed  CAS  Google Scholar 

  • Doetsch F, Petreanu L, Caille I et al (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034

    Article  PubMed  CAS  Google Scholar 

  • Evanko DS, Zhang Q, Zorec R, Haydon PG (2004) Defining pathways of loss and secretion of chemical messengers from astrocytes. Glia 47:233–240

    Article  PubMed  Google Scholar 

  • Garcia AD, Doan NB, Imura T et al (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Gascon E, Dayer AG, Sauvain MO et al (2006) GABA regulates dendritic growth by stabilizing lamellipodia in newly generated interneurons of the olfactory bulb. J Neurosci 26:12956–12966

    Article  PubMed  CAS  Google Scholar 

  • Giorgi-Gerevini V, Melchiorri D, Battaglia G et al (2005) Endogenous activation of metabotropic glutamate receptors supports the proliferation and survival of neural progenitor cells. Cell Death Differ 12:1124–1133

    Article  PubMed  Google Scholar 

  • Gutierrez R (2005) The dual glutamatergic-GABAergic phenotype of hippocampal granule cells. Trends Neurosci 28:297–303

    Article  PubMed  CAS  Google Scholar 

  • Hagg T (2005) Molecular regulation of adult CNS neurogenesis: an integrated view. Trends Neurosci 28:589–595

    Article  PubMed  CAS  Google Scholar 

  • Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774

    PubMed  CAS  Google Scholar 

  • Heck N, Kilb W, Reiprich P et al (2007) GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo. Cereb Cortex 17:138–148

    Article  PubMed  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  PubMed  CAS  Google Scholar 

  • Huettner JE (1990) Glutamate receptor channels in rat DRG neurons: activation by kainate and quisqualate and blockade of desensitization by Con A. Neuron 5:255–266

    Article  PubMed  CAS  Google Scholar 

  • Jankovski A, Sotelo C (1996) Subventricular zone-olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J Comp Neurol 371:376–396

    Article  PubMed  CAS  Google Scholar 

  • Kishi K (1987) Golgi studies on the development of granule cells of the rat olfactory bulb with reference to migration in the subependymal layer. J Comp Neurol 258:112–124

    Article  PubMed  CAS  Google Scholar 

  • Laywell ED, Rakic P, Kukekov VG et al (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 97:13883–13888

    Article  PubMed  CAS  Google Scholar 

  • Lerma J, Paternain AV, Naranjo JR, Mellstrom B (1993) Functional kainate-selective glutamate receptors in cultured hippocampal neurons. Proc Natl Acad Sci USA 90:11688–11692

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Bolteus AJ, Balkin DM et al (2006a) GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 54:394–410

    Article  PubMed  Google Scholar 

  • Liu X, Bolteus AJ, Balkin DM et al (2006b) GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 54:394–410

    Article  PubMed  Google Scholar 

  • Liu X, Wang Q, Haydar TF, Bordey A (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    Article  PubMed  CAS  Google Scholar 

  • LoTurco JJ, Owens DF, Heath MJ et al (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    Article  PubMed  CAS  Google Scholar 

  • Mercier F, Kitasako JT, Hatton GI (2002) Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451:170–188

    Article  PubMed  Google Scholar 

  • Nguyen L, Malgrange B, Breuskin I et al (2003) Autocrine/paracrine activation of the GABA(A) receptor inhibits the proliferation of neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+) precursor cells from postnatal striatum. J Neurosci 23:3278–3294

    PubMed  CAS  Google Scholar 

  • Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  PubMed  CAS  Google Scholar 

  • Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054

    PubMed  CAS  Google Scholar 

  • Peretto P, Merighi A, Fasolo A, Bonfanti L (1997) Glial tubes in the rostral migratory stream of the adult rat. Brain Res Bull 42:9–21

    Article  PubMed  CAS  Google Scholar 

  • Peretto P, Merighi A, Fasolo A, Bonfanti L (1999) The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain. Brain Res Bull 49:221–243

    Article  PubMed  CAS  Google Scholar 

  • Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  PubMed  CAS  Google Scholar 

  • Platel JC, Boisseau S, Dupuis A et al (2005) Na+ channel-mediated Ca2+ entry leads to glutamate secretion in mouse neocortical preplate. Proc Natl Acad Sci USA 102:19174–19179

    Article  PubMed  CAS  Google Scholar 

  • Platel JC, Dupuis A, Boisseau S et al (2007) Synchrony of spontaneous calcium activity in mouse neocortex before synaptogenesis. Eur J Neurosci 25:920–928

    Article  PubMed  Google Scholar 

  • Poluch S, Konig N (2002) AMPA receptor activation induces GABA release from neurons migrating tangentially in the intermediate zone of embryonic rat neocortex. Eur J Neurosci 16:350–354

    Article  PubMed  Google Scholar 

  • Privat A, Leblond CP (1972) The subependymal layer and neighboring region in the brain of the young rat. J Comp Neurol 146:277–302

    Article  PubMed  CAS  Google Scholar 

  • Sanai N, Tramontin AD, Quinones-Hinojosa A et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  PubMed  CAS  Google Scholar 

  • Sawamoto K, Wichterle H, Gonzalez-Perez O et al (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311:629–632

    Article  PubMed  CAS  Google Scholar 

  • Schlett K (2006) Glutamate as a modulator of embryonic and adult neurogenesis. Curr Top Med Chem 6:949–960

    Article  PubMed  CAS  Google Scholar 

  • Smart I (1961) The subependymal layer of the mouse brain and its cellular production as shown by radioautography after thymidine-H3 injection. J Comp Neurol 116:325–349

    Article  Google Scholar 

  • Sommer B, Seeburg PH (1992) Glutamate receptor channels: novel properties and new clones. Trends Pharmacol Sci 13:291–296

    Article  PubMed  CAS  Google Scholar 

  • Stewart RR, Hoge GJ, Zigova T, Luskin MB (2002) Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABA(A) receptors. J Neurobiol 50:305–322

    Article  PubMed  CAS  Google Scholar 

  • Sucher NJ, Deitcher DL (1995) PCR and patch-clamp analysis of single neurons. Neuron 14:1095–1100

    Article  PubMed  CAS  Google Scholar 

  • Swarzenski BC, O’Malley KL, Todd RD (1996) PTX-sensitive regulation of neurite outgrowth by the dopamine D3 receptor. Neuroreport 7:573–576

    Article  PubMed  CAS  Google Scholar 

  • Wang DD, Krueger DD, Bordey A (2003) GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J Physiol (Lond) 550:785–800

    Article  CAS  Google Scholar 

  • Xu HT, Yuan XB, Guan CB et al (2004) Calcium signaling in chemorepellant Slit2-dependent regulation of neuronal migration. Proc Natl Acad Sci USA 101:4296–4301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the National Institute of Health R01 NS048256 and DC007681 (A.B.) and NSF graduate Research Fellowship (B.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angélique Bordey.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10735-007-9153-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platel, JC., Lacar, B. & Bordey, A. GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis. J Mol Hist 38, 303–311 (2007). https://doi.org/10.1007/s10735-007-9103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-007-9103-8

Keywords

Navigation