Skip to main content
Log in

Osmotic regulation beyond nitrate nutrients in plant resistance to stress: a review

  • Review
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nitrate (NO3) not only serves as an essential nutrient to ensure plant growth and development and is involved in protein and nucleic acid synthesis, NO3 stored in vacuoles can also reduce osmotic potential to help plants absorb water under changeable stress conditions. Moreover, effective remobilization of stored NO3 is important to maintain plant development in nature. In this paper, we review the literature on the role of NO3 stored vacuoles in osmotic regulation and NO3 remobilization under stress conditions, particularly for halophytes under salinity stress. Knowledge of how halophytes deal with adverse effects by using NO3 as an osmolyte will be helpful for making better decisions to improve abiotic stress resistance in plant production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akpinar A (2023) Physiological and biochemical mechanisms of salinity tolerance in Carex morrowii Boott. Phyton-Int J Exp Bot 92:2197–2210

    Google Scholar 

  • Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ 28:500–512

    Article  CAS  PubMed  Google Scholar 

  • Alfatih A, Zhang J, Song Y, Jan SU, Zhang ZS, Xia JQ, Zhang ZY, Nazish T, Wu J, Zhao PX et al (2022) Nitrate-responsive OsMADS27 promotes salt tolerance in rice. Plant Commun 4:100458

    Article  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Aragón R, Rodríguez-Navarro A (2017) Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions. Plant J 91:208–219

    Article  PubMed  Google Scholar 

  • Amtmann A, Armengaud P (2009) Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr Opin Plant Biol 12:275–283

    Article  CAS  PubMed  Google Scholar 

  • Bergsdorf EY, Zdebik AA, Jentsch TJ (2009) Residues important for nitrate/proton coupling in plant and mammalian CLC transporters. J Biol Chem 284:11184–11193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blom-Zandstra M, Lampe JEM (1985) The role of nitrate in the osmoregulation of lettuce (Lactuca sativa L.) grown at different light intensities. J Exp Bot 36:1043–1052

    Article  CAS  Google Scholar 

  • Carpaneto A, Boccaccio A, Lagostena L, Di Zanni E, Scholz-Starke J (2017) The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H+ exchange activity. EMBO Rep 18:1100–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Song J, Wang BS (2010) NaCl increases the activity of the plasma membrane H+-ATPase in C3 halophyte Suaeda salsa callus. Acta Physiol Plant 32:27–36

    Article  Google Scholar 

  • Chen CZ, Lv XF, Li JY, Yi HY, Gong JM (2012) Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance. Plant Physiol 159:1582–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Zhang Z, Xu X, Tang Q, Liu J, Liu B, Zheng C (2021) CmCLCa plays a key role in the storage of nitrate in chrysanthemum leaf vacuoles. J Plant Growth Regul 40:215–225

    Article  CAS  Google Scholar 

  • Chu M, Wang Y, Mu B, Ge H, Zhang C, Zhao F, Fu A, Luan S, Li L, Lan W (2021) An ICln homolog contributes to osmotic and low-nitrate tolerance by enhancing nitrate accumulation in Arabidopsis. Plant Cell Environ 44:1580–1595

    Article  CAS  PubMed  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942

    Article  PubMed  Google Scholar 

  • De Angeli A, Moran O, Wege S, Filleur S, Ephritikhine G, Thomine S, Barbier-Brygoo H, Gambale F (2009) ATP binding to the C terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles. J Biol Chem 284:26526–26532

    Article  PubMed  PubMed Central  Google Scholar 

  • De Haan RL, Schuiteman MA, Vos RJ (2017) Residual soil nitrate content and profitability of five cropping systems in northwest Iowa. PLoS ONE 12:e0171994

    Article  PubMed  PubMed Central  Google Scholar 

  • Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F (2011) From the soil to the seeds: the long journey of nitrate in plants. J Exp Bot 62:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Di Martino C, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463

    Article  PubMed  Google Scholar 

  • Ding X, Tian C, Zhang S, Song J, Zhang F, Mi G, Feng G (2010) Effects of NO3-N on the growth and salinity tolerance of Tamarix Laxa Willd. Plant Soil 331:57–67

    Article  CAS  Google Scholar 

  • Duan HM (2019) The role of Suaeda salsa SsCLC-1 in nitrate accumulation. MS thesis. Shandong Normal University, Jinan, China. (in Chinese with English abstract)

  • Fan SC, Lin CS, Hsu PK, Lin SH, Tsay YF (2009) The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 21:2750–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fecht-Bartenbach JV, Bogner M, Dynowski M, Ludewig U (2010) CLC-b-mediated NO3/H+ exchange across the tonoplast of Arabidopsis vacuoles. Plant Cell Physiol 51:960–968

    Article  PubMed  Google Scholar 

  • Geelen D, Lurin C, Bouchez D, Frachisse JM, Lelièvre F, Courtial B, Barbier-Brygoo H, Maurel C (2000) Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J 21:259–267

    Article  CAS  PubMed  Google Scholar 

  • Geilfus CM (2018) Chloride: from nutrient to Toxicant. Plant Cell Physiol 59:877–886

    Article  CAS  PubMed  Google Scholar 

  • He YN, Peng JS, Cai Y, Liu DF, Guan Y, Yi HY, Gong JM (2017) Tonoplast-localized nitrate uptake transporters involved in vacuolar nitrate efflux and reallocation in Arabidopsis. Sci Rep 7:6417

    Article  PubMed  PubMed Central  Google Scholar 

  • Hessini K, Issaoui K, Ferchichi S, Saif T, Abdelly C, Siddique KHM, Cruz C (2019) Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiol Biochem 139:171–178

    Article  CAS  PubMed  Google Scholar 

  • Hodin J, Lind C, Marmagne A, Espagne C, Bianchi MW, De Angeli A, Abou-Choucha F, Bourge M, Chardon F, Thomine S et al (2023) Proton exchange by the vacuolar nitrate transporter CLCa is required for plant growth and nitrogen use efficiency. Plant Cell 35:318–335

    Article  PubMed  Google Scholar 

  • Hsu PK, Tsay YF (2013) Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiol 163:844–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Li M, Zhou K, Sun T, Hu L, Li C, Ma F (2018) Uptake and metabolism of ammonium and nitrate in response to drought stress in Malus prunifolia. Plant Physiol Biochem 127:185–193

    Article  CAS  PubMed  Google Scholar 

  • Iglesias DJ, Levy Y, Gómez-Cadenas A, Tadeo FR, Primo-Millo E, Talon M (2004) Nitrate improves growth in salt-stressed citrus seedlings through effects on photosynthetic activity and chloride accumulation. Tree Physiol 24:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Izmailov SF (2004) Saturation and utilization of nitrate pools in pea and Sugar Beet leaves. Russ J Plant Physiol 51:189–193

    Article  CAS  Google Scholar 

  • Jiang Z, Zhong Y, Yang J, Wu Y, Li H, Zheng L (2019) Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production. Sci Total Environ 670:210–217

    Article  CAS  PubMed  Google Scholar 

  • Kosov KR, Urban PVTMS, Pr Il MOI IT (2013) Plant proteome responses to salinity stress - comparison of glycophytes and halophytes. Funct Plant Biol 40:775–786

    Article  PubMed  Google Scholar 

  • Li Q, Song J (2019) Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species. BMC Plant Biol 19:388

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, He X, Chen Y, Jing Y, Shen C, Yang J, Teng W, Zhao X, Hu W, Hu M et al (2020) A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. New Phytol 225:1667–1680

    Article  CAS  PubMed  Google Scholar 

  • Liu RR (2022) Functional study of high-affinity nitrate transporter genes SsNRT2.1 and SsNRT2.5 in Suaeda salsa. Ph.D. thesis. Shandong Normal University, Jinan, China. (in Chinese with English abstract)

  • Liu C, Zhao Y, Zhao X, Dong J, Yuan Z (2020) Genome-wide identification and expression analysis of the CLC gene family in pomegranate (Punica granatum) reveals its roles in salt resistance. BMC Plant Biol 20:560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Cui B, Jia T, Song J (2021a) Role of Suaeda salsa SsNRT2.1 in nitrate uptake under low nitrate and high saline conditions. Plant Physiol Biochem 159:171–178

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Cui B, Lu X, Song J (2021b) The positive effect of salinity on nitrate uptake in Suaeda salsa. Plant Physiol Biochem 166:958–963

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hu B, Chu C (2022) Nitrogen assimilation in plants: current status and future prospects. J Genet Genomics 49:394–404

    Article  CAS  PubMed  Google Scholar 

  • Lu YT, Liu DF, Wen TT, Fang ZJ, Chen SY, Li H, Gong JM (2022) Vacuolar nitrate efflux requires multiple functional redundant nitrate transporter in Arabidopsis thaliana. Front Plant Sci 13:926809

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Yang Y, Liu R, Li Q, Song J (2020) Adaptation of euhalophyte Suaeda salsa to nitrogen Starvation under salinity. Plant Physiol Biochem 146:287–293

    Article  CAS  PubMed  Google Scholar 

  • Mao P, Run Y, Wang H, Han C, Zhang L, Zhan K, Xu H, Cheng X (2022) Genome-wide identification and functional characterization of the chloride channel TaCLC gene family in wheat (Triticum aestivum L). Front Genet 13:846795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinoia E, Heck U, Wiemken AJN (1981) Vacuoles as storage compartments for nitrate in barley leaves. Nature 289:292–294

    Article  CAS  Google Scholar 

  • McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10:1011–1025

    Article  CAS  PubMed  Google Scholar 

  • Mcintyre GI (1997) The role of nitrate in the osmotic and nutritional control of plant development. Funct Plant Biol 24:103–118

    Article  CAS  Google Scholar 

  • Migocka M, Warzybok A, Papierniak A, Kłobus G (2013) NO3/H+ antiport in the tonoplast of cucumber root cells is stimulated by nitrate supply: evidence for a reversible nitrate-induced phosphorylation of vacuolar NO3/H+ antiport. PLoS ONE 8:e73972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda-Apodaca J, Agirresarobe A, Martínez-Goñi XS, Yoldi-Achalandabaso A, Pérez-López U (2020) N metabolism performance in Chenopodium quinoa subjected to drought or salt stress conditions. Plant Physiol Biochem 155:725–734

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops-what is the cost? New Phytol 208:668–673

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Passioura JB, Colmer TD, Byrt CS (2020) Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol 225:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Nasraoui HA, Bouthour D, Hfaidh R, Gouia H, Pageau K, Chaffei HC (2013) The role of nitrogen availability for the salt-tolerance of two different varieties of durum wheat. Bull Environ Contam Toxicol 91:711–717

    Article  CAS  PubMed  Google Scholar 

  • Nedelyaeva OI, Popova LG, Khramov DE, Volkov VS, Balnokin YV (2023) Chloride channel family in the euhalophyte Suaeda altissima (L.) pall: cloning of novel members SaCLCa2 and SaCLCc2, general characterization of the family. Int J Mol Sci 24:941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni B, Liu M, Lü S, Xie L, Wang Y (2011) Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem 59:10169–10175

    Article  CAS  PubMed  Google Scholar 

  • Nublat A, Desplans J, Casse F, Berthomieu P (2001) sas1, an Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium. Plant Cell 13:125–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Tang L, Xu Y (2003) Overview of nitrate behavior in plant vacuoles. Acta Pedol Sinica (in Chin Engl Abstract) 3:465–470

    Google Scholar 

  • Song J, Wang B (2015) Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Ann Bot 115:541–553

    Article  CAS  PubMed  Google Scholar 

  • Song J, Ding X, Feng G, Zhang F (2006) Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions. New Phytol 171:357–366

    Article  CAS  PubMed  Google Scholar 

  • Song J, Chen M, Feng G, Jia Y, Wang B, Zhang F (2009a) Effect of salinity on growth, ion accumulation and the roles of ions in osmotic adjustment of two populations of Suaeda salsa. Plant Soil 314:133–141

    Article  CAS  Google Scholar 

  • Song J, Shi G, Xing S, Yin C, Fan H, Wang B (2009b) Ecophysiological responses of the euhalophyte Suaeda salsa to the interactive effects of salinity and nitrate availability. Aquat Bot 91:311–317

    Article  CAS  Google Scholar 

  • Song Y, Li J, Liu M, Meng Z, Liu K, Sui N (2019) Nitrogen increases drought tolerance in maize seedlings. Funct Plant Biol 46:350–359

    Article  CAS  PubMed  Google Scholar 

  • Steingröver E, Ratering P, Siesling J (1986) Daily changes in uptake, reduction and storage of nitrate in spinach grown at low light intensity. Physiol Plant 66:550–556

    Article  Google Scholar 

  • Stienstra AW (1986) Nitrate accumulation and growth of Aster tripolium L. with a continuous and intermittent nitrogen supply. Plant Cell Environ 9:307–313

    Article  Google Scholar 

  • Tegeder M, Masclaux-Daubresse C (2018) Source and sink mechanisms of nitrogen transport and use. New Phytol 217:35–53

    Article  PubMed  Google Scholar 

  • Tian J, Pang Y, Yuan W, Peng J, Zhao Z (2022) Growth and nitrogen metabolism in Sophora japonica (L.) as affected by salinity under different nitrogen forms. Plant Sci 322:111347

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Hsu PK, Tsay YF (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17:458–467

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Shen Q, Xu G, Guo S (2014) New insight into the strategy for nitrogen metabolism in plant cells. Int Rev Cell Mol Biol 310:1–37

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Cheng YH, Chen KE, Tsay YF (2018) Nitrate Transport, signaling, and use efficiency. Annu Rev Plant Biol 69:85–122

    Article  CAS  PubMed  Google Scholar 

  • Ward MR, Aslam M, Huffaker RC (1986) Enhancement of nitrate uptake and growth of barley seedlings by calcium under saline conditions. Plant Physiol 80:520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wege S, Jossier M, Filleur S, Thomine S, Barbier-Brygoo H, Gambale F, De Angeli A (2010) The proline 160 in the selectivity filter of the Arabidopsis NO3 /H+ exchanger AtCLCa is essential for nitrate accumulation in planta. Plant J 63:861–869

    Article  CAS  PubMed  Google Scholar 

  • Wege S, De Angeli A, Droillard MJ, Kroniewicz L, Merlot S, Cornu D, Gambale F, Martinoia E, Barbier-Brygoo H, Thomine S et al (2014) Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid. Sci Signal 7:ra65

    Article  PubMed  Google Scholar 

  • Wege S, Gilliham M, Henderson SW (2017) Chloride: not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient. J Exp Bot 68:3057–3069

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Xu T, Zhang J, Shen K, Li Z, Liu J (2020) Drought-Induced responses of Nitrogen Metabolism in Ipomoea batatas. Plants 9:1314

    Article  Google Scholar 

  • Yang MF, Song J, Wang BS (2010) Organ-specific responses of vacuolar H+-ATPase in the shoots and roots of C3 halophyte Suaeda salsa to NaCl. J Integr Plant Biol 52:308–314

    Article  CAS  PubMed  Google Scholar 

  • Zhao JB, Du CJ, Ma CM, Sun JC, Han ZT, Yan DH, Jiang ZP, Shi SQ (2020) Response of photosynthesis and carbon/nitrogen metabolism to drought stress in Chinese chestnut ‘Yanshanzaofeng’ seedlings. Chin J Appl Ecol (in Chin Engl Abstract) 31:3674–3680

    Google Scholar 

Download references

Funding

The work is supported from National Natural Science Research Foundation of China (32171499, 31570392).

Author information

Authors and Affiliations

Authors

Contributions

G.F. and J.S. conceived the idea and led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Jie Song.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Communicated by Zsófia Bánfalvi.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, R., Liu, Y., Song, C. et al. Osmotic regulation beyond nitrate nutrients in plant resistance to stress: a review. Plant Growth Regul 103, 1–8 (2024). https://doi.org/10.1007/s10725-023-01093-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-023-01093-y

Keywords

Navigation