Skip to main content
Log in

Genome-wide identification, characterization and expression analysis of novel long non-coding RNAs that mediate IBA-induced adventitious root formation in apple rootstocks

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Adventitious roots (ARs) induced are essential for apple rootstock vegetative propagation, however, a transcriptomic analysis of long non-coding RNAs (lncRNAs) that mediate AR formation under exogenous indole-3-butyric acid (IBA) treated in the apple dwarf rootstock ‘M26’ (Malus pumila Mill.) rarely been explored. To explore this, we examined ‘M26’ stem cuttings treated with IBA (1 mg L−1) and control (without IBA treatment), where anatomical analysis showed IBA-treated stems began to develop AR primordia within third day and ARs occurred after 16 days, while the control had no ARs developed. An assessment of hormone content levels in basal stem cuttings showed that, after IBA treatment, indole-3-acetic acid, zeatin riboside, and jasmonic acid were increased at third day but subsequently decreased later, however gibberellin-3 was decreased at third day. The control and IBA-treated third day basal stem cuttings were sent for whole-genome, high-throughput RNA sequencing. The results showed a total of 855 reliable lncRNAs were identified as novel lncRNAs and 63 novel lncRNAs were defined as IBA-responsive lncRNAs. Fifteen IBA-responsive lncRNAs were predicted to be putative targets for 94 miRNAs and three IBA-responsive lncRNA (CUFF.16781, CUFF.2143 and CUFF.41325) was predicted to be the target mimic of mdm-miR156 and mdm-miR396. Functional annotations of these potential target genes suggest that they are involved in many different biological processes, including plant hormone and sucrose signaling, which suggests that IBA-responsive lncRNAs may participate in AR formation in apple rootstocks. This study sheds light on IBA-mediated AR formation in apple rootstock cuttings and provides a foundation for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amor BB, Wirth S, Merchan F, Laporte P, D’Aubenton-Carafa Y, Hirsch J, Maizel A, Mallory A, Lucas A, Deragon JM, Vaucheret H, Thermes C, Crespi M (2008) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19(1):57–69

    Article  PubMed  CAS  Google Scholar 

  • An N, Fan S, Wang Y, Zhang L, Gao C, Zhang D, Han M (2018) Genome-wide identification, characterization and expression analysis of long non-coding RNAs in different tissues of apple. Gene 666:44–57

    Article  CAS  PubMed  Google Scholar 

  • Bazin J, Baileyserres J (2015) Emerging roles of long non-coding RNA in root developmental plasticity and regulation of phosphate homeostasis. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00400

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491(7424):454–457

    Article  CAS  PubMed  Google Scholar 

  • Da Costa CT, de Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG (2013) When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00133

    Article  PubMed  PubMed Central  Google Scholar 

  • David R, Burgess A, Parker B, Li J, Pulsford K, Sibbritt T, Preiss T, Searle IR (2017) Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs. Plant Cell. https://doi.org/10.1105/tpc.16.00751

    Article  PubMed  PubMed Central  Google Scholar 

  • Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF (2012) Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002419

    Article  PubMed  PubMed Central  Google Scholar 

  • Della Rovere F, Fattorini L, D’Angeli S, Veloccia A, Falasca G, Altamura MM (2013) Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of Arabidopsis. Ann Bot 112(7):1395–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Guigó Roderic (2012) The gencode v7 catalog of human long noncoding rnas: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Mao LJ, Wang ST, Yuan BF, Feng YQ (2013) Determination of endogenous brassinosteroids in plant tissues using solid-phase extraction with double layered cartridge followed by high-performance liquid chromatography-tandem mass spectrometry. Phytochem Anal 24(4):386–394

    Article  CAS  PubMed  Google Scholar 

  • Dobrev PI, Kamı́nek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950(1–2):21–29

    Article  PubMed  Google Scholar 

  • Dobrev PI, Vankova R (2012) Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol Biol 913(913):251–261

    CAS  PubMed  Google Scholar 

  • Gambino G, Perrone I, Gribaudo I (2008) A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19(6):520–525

    Article  CAS  PubMed  Google Scholar 

  • Golicz A, Singh MB, Bhalla PL (2018) The long intergenic non-coding RNA (lincRNA) landscape of the soybean genome. Plant Physiol. https://doi.org/10.1104/pp.17.01657

    Article  PubMed  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10(5):453–460

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Chang W, Wang J, Cheng X, Wang Y (2015) Research progress on gene expression and regulation of adventitious root development in woody species. Genomics Appl Biol 34(1):215–220

    Google Scholar 

  • Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24(6):2515–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochholdinger F, Park WJ, Sauer M, Woll K (2004) From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci 9(1):42–48

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144(1):232–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aokikinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(Database issue):D354–D357

    Article  CAS  PubMed  Google Scholar 

  • Kim ED, Sung S (2012) Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci 17(1):16–21

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35(web server issue):W345–W349

    Article  PubMed  PubMed Central  Google Scholar 

  • Krzywinski M, Schein JI (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leguã V, Rigal A, Bhalerao RP (2014) Adventitious root formation in tree species: involvement of transcription factors. Physiol Plant 151(2):192–198

    Article  CAS  Google Scholar 

  • Lei C, Fan S, Li K, Meng Y, Mao J, Han M, Zhao C, Bao L, Zhang D (2018) iTRAQ-based proteomic analysis reveals potential regulation networks of IBA-induced adventitious root formation in apple. Int J Mol Sci. https://doi.org/10.3390/ijms19030667

    Article  PubMed  PubMed Central  Google Scholar 

  • Li XF, He YK, Tang ZC (2000) Effects of IAA and stimulated microgravity on formation of adventitious roots of Chinese cabbage. Shi Yan Sheng Wu Xue Bao 33(2):179–187

    CAS  PubMed  Google Scholar 

  • Li B, Wang J, Ren X, Bao L, Zhang L, Zhang L, Han M, Zhang D (2015a) Root growth, yield and fruit quality of ‘Red Fuji’ apple trees in relation to planting depth of dwarfing interstock on the Loess Plateau. Eur J Hortic Sci 80(3):109–116

    Article  CAS  Google Scholar 

  • Li SW, Shi RF, Leng Y (2015b) De novo characterization of the mung bean transcriptome and transcriptomic analysis of adventitious rooting in seedlings using RNA-Seq. PLoS ONE 10(7):e132969

    Google Scholar 

  • Liang S, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Yi Z (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41(17):e166

    Article  CAS  Google Scholar 

  • Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JAD, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20(10):2603–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv S, Yu D, Sun Q, Jiang J (2017) Activation of gibberellin 20-oxidase 2 undermines auxin-dependent root and root hair growth in NaCl-stressed Arabidopsis seedlings. Plant Growth Regul 84(14):1–12

    Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448-3449

    Article  CAS  Google Scholar 

  • Mao J, Zhang D, Li K, Liu Z, Liu X, Song C, Li G, Zhao C, Ma J, Han M (2017) Effect of exogenous Brassinolide (BR) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Plant Growth Regul 82(4):1–11

    Google Scholar 

  • Mao J, Zhang D, Meng Y, Li K, Wang H, Han M (2018) Inhibition of adventitious root development in apple rootstocks by cytokinin is based on its suppression of adventitious root primordia formation. Physiol Plant. https://doi.org/10.1111/ppl.12817

    Article  PubMed  Google Scholar 

  • Naija S, Elloumi N, Jbir N, Ammar S, Kevers C (2008) Anatomical and biochemical changes during adventitious rooting of apple rootstocks MM 106 cultured in vitro. CR Biol 331(7):518–525

    Article  CAS  Google Scholar 

  • Qiyun XU, Fanghua C, Xincheng AN, Shichou H (2012) Production method for paraffin section of invasive species of Bemisia tabaci. Plant Dis Pests 3(2):46–48

    Google Scholar 

  • Sjödin A, Street NR, Sandberg G, Gustafsson P, Jansson S (2009) The Populus Genome Integrative Explorer (PopGenIE): a new resource for exploring the Populus genome. New Phytol 182(4):1013–1025

    Article  PubMed  CAS  Google Scholar 

  • Steffens B, Sauter M (2005) Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol 139(2):713–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strader LC, Bartel B (2011) Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol Plant 4(3):477–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Zhang Z, Bailey TL, Perkins AC, Tallack MR, Xu Z, Liu H (2012) Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study. BMC Bioinform 13(1):1–12

    Article  CAS  Google Scholar 

  • Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA–RNA interaction search. Bioinformatics 24(22):2657–2663

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Song Y, Du Q, Yang X, Ci D, Chen J, Xie J, Li B, Zhang D (2016) Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus. J Exp Bot 67(8):2467–2482

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2014) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562

    Article  CAS  Google Scholar 

  • Wang GP, Xiaomin X, Chao L, Peixia N, Jinzheng W (2012) Study and evaluation on characteristics of different M series of dwarfing interstocks for apples. Shandong Agric Sci 44(5):37–39, 44

    CAS  Google Scholar 

  • Wang J, Yu W, Yang Y, Li X, Chen T, Liu T, Ma N, Yang X, Liu R, Zhang B (2015) Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci Rep. https://doi.org/10.1038/srep16946

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu HJ, Wang ZM, Wang M, Wang XJ (2013) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161(4):1875–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing L, Zhang D, Li Y, Zhao C, Zhang S, Shen Y, An N, Han M (2014) Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics. 15(1):1125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu X, Li X, Hu X, Wu T, Wang Y, Xu X, Zhang X, Han Z (2017) High miR156 expression is required for auxin-induced adventitious root formation via MxSPL26 independent of PINs and ARFs in Malus xiaojinensis. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01059

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang N, Lv Y, Liu Z, Pan L, Lv S, Han H, Wang G (2017) Transcriptional regulation of CLE genes by cytokinin in Arabidopsis shoots and roots. Plant Growth Regul 81(1):167–173

    Article  CAS  Google Scholar 

  • Zhang J, Mujahid H, Hou Y, Nallamilli BR, Peng Z (2013) Plant long ncRNAs: a new frontier for gene regulatory control. Am J Plant Sci 4(5):1038–1045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Beijing ORI-GENE company, Beijing, China for providing technical support.

Funding

This work was financially supported by Science and Technology Innovative Engineering Project in the Shaanxi province of China (2017NY0055, 2016KTZDNY01-10), Tang Scholar by Cyrus Tang Foundation and Northwest Agriculture and Forestry University, the China Apple Research System (CARS-27), the Yangling Subsidiary Center Project of the National Apple Improvement Center, Collaborative Innovation Center for Shaanxi Fruit Industry Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

. Pipeline for predicting novel lncRNAs. (TIF 309 KB)

Figure S2

. Sequencing result evaluation of lncRNAs. (A) The FPKM density distribution of lncRNAs. (B) The boxplot of FPKM distribution of lncRNAs. (C) The volcano plot to show differential lncRNAs. (D) The correlation between sequencing samples. M01, M02, and M03 respectively represent Control l1, Control 2, Control 3. M31, M32, and M33 respectively represent IBA 1, IBA 2, IBA 3. Control represents control samples and IBA represents IBA-treated samples. (TIF 3681 KB)

Figure S3

. Functional categorization of potential target genes of IBA-responsive lncRNAs based on the biological process of Gene Ontology. (TIF 15166 KB)

Table S1

. Primers used in this study. (XLSX 14 KB)

Table S2

. Details of IBA-responsive lncRNAs. (XLSX 144 KB)

Table S3

. IBA-responsive lncRNAs corresponding to miRNA precursors. (XLSX 10 KB)

Table S4

. IBA-responsive lncRNAs targeted by miRNAs. (XLSX 19 KB)

Table S5

. IBA-responsive lncRNAs predicated as miRNAs target-mimic. (XLSX 11 KB)

Table S6

. Potential target genes of IBA-responsive lncRNAs. (XLSX 419 KB)

Table S7

. Functional categorization of up-regulated IBA-responsive lncRNAs targets based on the biological process of Gene Ontology. (XLSX 173 KB)

Table S8

. Functional categorization of down-regulated IBA-responsive lncRNAs targets based on the biological process of Gene Ontology. (XLSX 124 KB)

Table S9

. The annotation of Gene Ontology terms of up-regulated IBA-responsive lncRNAs targets. (XLSX 13 KB)

Table S10

. The pathway that IBA-responsive lncRNAs may involve in base on Kyoto Encyclopedia of Genes and Genomes (KEGG). (XLSX 26 KB)

Table S11

. Details of RNA-seq data. (XLSX 10 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Xing, L., Li, K. et al. Genome-wide identification, characterization and expression analysis of novel long non-coding RNAs that mediate IBA-induced adventitious root formation in apple rootstocks. Plant Growth Regul 87, 287–302 (2019). https://doi.org/10.1007/s10725-018-0470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0470-9

Keywords

Navigation