Skip to main content
Log in

Analysis of genomic DNA methylation patterns in regenerated and control plants of rye (Secale cereale L.)

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Rye (Secale cereale L.) is a species that has shown high rates of somaclonal variation when plants obtained by in vitro culture were analysed using different techniques. In this study, using methylation-sensitive amplified polymorphism (MSAP) markers, we analysed the cytosine methylation status at genomic level of regenerated plants of rye that were obtained by somatic embryogenesis. Such plants were originated from three different cell lines and the results were compared with the data obtained from the control plants grown from seeds of the same cultivar and lot. A similar total number of MSAP markers was observed in the regenerated (937) and control plants (1,022), while the mean number detected per plant was significantly higher in regenerated (554.43) than in control plants (356.00). The analysis indicated conservation of the number of partially-methylated CCGG/GGCC sites for all type of plants. However the mean number of non-methylated sites was near twofold in the regenerated plants (442.48) than in control plants (248.19). Methylation changes have been detected in all the regenerated plants when compared within cell lines, with an average frequency of 9.01 % of the detected markers. We also observed that regenerated plants from one or several cell lines shared methylation changes at the same locus pointing to a non-random behaviour of the changes in genomic methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alves E, Ballesteros I, Linacero R, Vázquez AM (2005) RYS1, a foldback transposon, is activated by tissue culture and shows preferential insertion points into the rye genome. Theor Appl Genet 111:431–436

    Article  PubMed  CAS  Google Scholar 

  • Asami H, Inomata N, Okamoto M (1976) Chromosome variation in callus cells derived from Secale cereale L. with and without B-chromosome. Jpn J Genet 51:297–303

    Article  Google Scholar 

  • Bairu MW, Aremu AO, Staden JV (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Baránek M, Krizan B, Ondrusikova E, Pidra M (2010) DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell Tissue Organ Cult 101:11–22

    Article  Google Scholar 

  • Bardini M, Labra M, Winfield M, Sala F (2003) Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana. Plant Cell Tissue Organ Cult 72:157–162

    Article  CAS  Google Scholar 

  • Baurens F-C, Bonnot F, Bienvenu D, Causse S, Legavre T (2003) Using SD-AFLP and MSAP to assess CCGG methylation in the banana genome. Plant Mol Biol Rep 21:339–348

    Article  CAS  Google Scholar 

  • Bebeli PJ, Karp A, Kaltsikes PJ (1990) Somaclonal variation from cultured immature embryos of sister lines of rye differing in heterochromatic content. Genome 33:177–183

    Google Scholar 

  • Bednarek P, Orlowska R, Koebner R, Zimny J (2007) Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biol 7:10

    Article  PubMed  Google Scholar 

  • Ben-Hattar J, Jiricny J (1988) Effect of cytosine methylation on the cleavage of oligonucleotide duplexes with restriction endonucleases HpaII and MspI. Nucl Acids Res 16:4160

    Article  PubMed  CAS  Google Scholar 

  • Berdasco M, Alcázar R, García-Ortiz MV, Ballestar E, Fernández AF, Roldán-Arjona T, Tiburcio AF, Altabella T, Buisine N, Quesneville H, Baudry A, Lepiniec L, Alaminos M, Rodríguez R, Lloyd A, Colot V, Bender J, Canal MJ, Esteller M, Fraga MF (2008) Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells. PLoS One 3:e3306

    Article  PubMed  Google Scholar 

  • Braun AC (1959) A demonstration of the recovery of the crown-gall tumor cell with the use of complex tumors of single-cell origin. Proc Natl Acad Sci USA 45:932–938

    Article  PubMed  CAS  Google Scholar 

  • Butkus V, Petrauskiene L, Maneliene Z, Klimasaukas S, Laucys V, Janulaitis A (1987) Cleavage of methylated CCCGGG sequences containing either N4-methylcytosine or 5-methylcytosine with MspI, HpaII, SmaI, XmaI and Cfr9I restriction endonucleases. Nucleic Acids Res 15:7091–7102

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty D, Yu KW, Paek KY (2003) Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleutherococcus senticosus). Plant Sci 165:61–68

    Article  CAS  Google Scholar 

  • Chan SW-L, Zhang X, Bernatavichute YV, Jacobsen SE (2006) Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol 4:e363

    Article  PubMed  Google Scholar 

  • Chen X, Ma Y, Chen F, Song W, Zhang L (2009) Analysis of DNA methylation patterns of PLBs derived from Cymbidium hybridium based on MSAP. Plant Cell Tissue Organ Cult 98:67–77

    Article  CAS  Google Scholar 

  • De la Puente R, González AI, Ruiz M, Polanco C (2008) Somaclonal variation in rye (Secale cereale L.) analyzed using polymorphic and sequenced AFLP markers. In Vitro Cell Dev Biol Plant 44:419–426

    Article  Google Scholar 

  • Díaz-Martínez M, Nava-Cedillo A, Guzmán-López JA, Escobar-Guzmán R, Simpson J (2012) Polymorphism and methylation patterns in Agave tequilana Weber var. ‘Azul’ plants propagated asexually by three different methods. Plant Sci 185:321–330

    Article  PubMed  Google Scholar 

  • Fiuk A, Bednarek PT, Rybczyński JJ (2010) Flow cytometry, HPLC-RP, and metAFLP analyses to assess genetic variability in somatic embryo-derived plantlets of Gentiana pannonica Scop. Plant Mol Biol Rep 28:413–420

    Article  CAS  Google Scholar 

  • Flavell RB (1986) Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc Lond B Biol Sci 312:227–242

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Yang D, Cao D, Ao M, Sui X, Wang Q, Kimatu J, Wang L (2010) In vitro micropropagation of Freesia hybrida and the assessment of genetic and epigenetic stability in regenerated plantlets. J Plant Growth Regul 29:257–267

    Article  CAS  Google Scholar 

  • Gonzalgo ML, Liang GN, Spruck CH III, Zingg JM, Rideout WM III, Jones PA (1997) Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res 57:594–599

    PubMed  CAS  Google Scholar 

  • Guo W, Wu R, Zhang Y, Liu X, Wang H, Gong L, Zhang Z, Liu B (2007) Tissue culture-induced locus-specific alteration in DNA methylation and its correlation with genetic variation in Codonopsis lanceolata Benth. et Hook. f. Plant Cell Rep 26:1297–1307

    Article  PubMed  CAS  Google Scholar 

  • Hanai LR, Floh EIS, Fungaro MHP, Santa-Catarina C, Viana AM, Vieira MLC (2010) Methylation patterns revealed by MSAP profiling in genetically stable somatic embryogenic cultures of Ocotea catharinensis (Lauraceae). In Vitro Cell Dev Biol Plant 46:368–377

    Article  CAS  Google Scholar 

  • Hao YJ, Wen XP, Deng XX (2004) Genetic and epigenetic evaluations of citrus calluses recovered from slow-growth culture. J Plant Physiol 161:479–484

    Article  PubMed  CAS  Google Scholar 

  • Hatada I, Hayashizaki Y, Hirotsune S, Komatsubara H, Mukai TA (1992) A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci USA 88:9523–9527

    Article  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

    Article  PubMed  CAS  Google Scholar 

  • Hou P, Meiju J, Nongyue H, Lu Z (2004) Microarray-based method to evaluate the accuracy of restriction endonucleases HpaII and MspI. Biochem Biophys Res Commun 314:110–117

    Article  PubMed  CAS  Google Scholar 

  • James AC, Peraza-Echeverria S, Herrera-Valencia VA, Martinez O (2004) Application of the amplified fragment length polymorphism (AFLP) and the methylation-sensitive amplification polymorphism (MSAP) techniques for the detection of DNA polymorphism and changes in DNA methylation in micropropagated bananas. In: Jain SM, Swennen R (eds) Banana improvement: cellular, molecular biology, and induced mutations. Science Publishers, Enfield, pp 287–306

    Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  PubMed  CAS  Google Scholar 

  • Karp A, Owen PG, Steele SH, Bebeli PJ, Kaltsikes PJ (1992) Variation in telomeric heterochromatin in somaclones of rye. Genome 35:590–593

    Article  Google Scholar 

  • Koukalova B, Fojtova M, Lim KY, Fulnecek J, Leitch AR, Kovarik A (2005) Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations. Plant Physiol 139:275–286

    Article  PubMed  CAS  Google Scholar 

  • Larkin P, Scowcroft W (1981) Somaclonal variation a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  PubMed  CAS  Google Scholar 

  • Li X, Xu M, Korban SS (2002) DNA methylation profiles differ between field-and in vitro-grown leaves of apple. J Plant Physiol 159:1229–1234

    Article  Google Scholar 

  • Li X, Yu X, Wang N, Feng Q, Dong Z, Liu L, Shen J, Liu B (2007) Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum (Trin.) Link). Plant Cell Tissue Organ Cult 90:153–168

    Article  Google Scholar 

  • Li W, Liu H, Cheng ZJ, Su YH, Han HN, Zhang Y, Zhang XS (2011) DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet 7:e1002243

    Article  PubMed  CAS  Google Scholar 

  • Linacero R, Vázquez AM (1992) Cytogenetic variation in rye regenerated plants and their progeny. Genome 35:428–430

    Article  Google Scholar 

  • Linacero R, Vázquez AM (1993) Somaclonal variation in rye. Mutat Res Lett 302:201–205

    Article  CAS  Google Scholar 

  • Linacero R, Alves EF, Vázquez AM (2000) Hot spots of DNA instability revealed through the study of somaclonal variation in rye. Theor Appl Genet 100:506–511

    Article  CAS  Google Scholar 

  • Linacero R, Rueda J, Esquivel E, Bellido A, Domingo A, Vázquez AM (2011) Genetic and epigenetic relationship in rye, Secale cereale L., somaclonal variation within somatic embryo-derived plants. In Vitro Cell Dev Biol Plant 47:618–628

    Article  Google Scholar 

  • Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  PubMed  CAS  Google Scholar 

  • McClelland M, Nelson M, Raschke E (1994) Effect of site-specifc modification on restriction endonucleases and DNA modification methyltransferases. Nucl Acids Res 22:3640–3659

    Article  PubMed  CAS  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  PubMed  CAS  Google Scholar 

  • Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  PubMed  CAS  Google Scholar 

  • Pacheco G, Cardoso SRS, Gagliardi RF, Valls JFM, Ferreira PCG, Cardoso MA, Mansur E (2008) Genetic and epigenetic analyses of in vitro-grown plants of Arachis villosulicarpa Hoehne (Leguminosae) obtained from seed explants through different regeneration pathways. J Hortic Sci Biotechnol 83:737–742

    CAS  Google Scholar 

  • Park SY, Murthy HN, Chakrabarthy D, Paek KY (2009) Detection of epigenetic variation in tissue-culture-derived plants of Doritaenopsis by methylation-sensitive amplification polymorphism (MSAP) analysis. In Vitro Cell Dev Biol Plant 45:104–108

    Article  CAS  Google Scholar 

  • Peraza-Echeverría S, Herrera-Valencia VA, Kay AJ (2001) Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 161:359–367

    Article  PubMed  Google Scholar 

  • Peredo EL, Revilla MA, Arroyo-Garcia R (2006) Assessment of genetic and epigenetic variation in hop plants regenerated from sequential subcultures of organic calli. J Plant Physiol 163:1071–1079

    Article  PubMed  CAS  Google Scholar 

  • Peredo EL, Arroyo-García R, Revilla MA (2009) Epigenetic changes detected in micropropagated hop plants. J Plant Physiol 166:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA 91:5222–5226

    Article  PubMed  CAS  Google Scholar 

  • Portis E, Acquadro A, Comino C, Lanteri S (2004) Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 166:169–178

    Article  CAS  Google Scholar 

  • Renau-Morata B, Nebauer SG, Arrillaga I, Segura J (2005) Assessments of somaclonal variation in micropropagated shoots of Cedrus: consequences of axillary bud breaking. Tree Genet Genomes 1:3–10

    Article  Google Scholar 

  • Reyna-López GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710

    Article  PubMed  Google Scholar 

  • Salmon A, Clotault J, Jenczewski E, Chable V, Dauleux MJM (2008) Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci 174:61–70

    Article  CAS  Google Scholar 

  • Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.). BMC Plant Biol 8:78

    Article  PubMed  Google Scholar 

  • Shan X, Li Y, Tan M, Zhao Q (2012) Tissue culture-induced alteration in cytosine methylation in new rice recombinant inbred lines. Afr J Biotechnol 11:4338–4344

    CAS  Google Scholar 

  • Sharma S, Bryan G, Winfield M, Millam S (2007) Stability of potato (Solanum tuberosum L.) plants regenerated via somatic embryos, axillary bud proliferated shoots, microtubers and true potato seeds: a comparative phenotypic, cytogenetic and molecular assessment. Planta 226:1449–1458

    Article  PubMed  CAS  Google Scholar 

  • Shibukawa T, Yazawa K, Kikuchi A, Kamada H (2009) Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 50-upstream region. Gene 437:22–31

    Article  PubMed  CAS  Google Scholar 

  • Smykal P, Valledor L, Rodríguez R, Griga M (2007) Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep 26:1985–1998

    Article  PubMed  CAS  Google Scholar 

  • Takata M, Kishima Y, Sano Y (2005) DNA methylation polymorphism in rice and wild rice strains: detection of epigenetic markers. Breed Sci 55:57–63

    Article  CAS  Google Scholar 

  • Tanurdzic M, Vaughn MW, Jiang H, Lee TJ, Slotkin RK, Sosinski B, Thompson WF, Doerge RW, Martienssen RA (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6:2880–2894

    PubMed  CAS  Google Scholar 

  • Ushijima T, Morimura K, Hosoya Y, Okonogi H, Tatematsu M, Sugimura T, Nagao M (1997) Establishment of methylation- sensitive-representational difference analysis and isolation of hypo-and hypermethylated genomic fragments in mouse liver tumors. Proc Natl Acad Sci USA 94:2284–2289

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Fijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang QM, Wang YZ, Sun LL, Gao FZ, Sun W, He J, Gao X, Wang L (2012) Direct and indirect organogenesis of Clivia miniata and assessment of DNA methylation changes in various regenerated plantlets. Plant Cell Rep 31:1283–1296

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Wu R, Zhang B, Jiang T, Li N, Qian K, Liu B, Zhang J (2012) Epigenetic instability in genetically stable micropropagated plants of Gardenia jasminoides Ellis. Plant Growth Regul 66:137–143

    Article  CAS  Google Scholar 

  • Xiong LZ, Xu CG, Saghai-Maroof MA, Zhang QF (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446

    Article  PubMed  CAS  Google Scholar 

  • Xu ML, Li XQ, Korban SS (2000) AFLP-based detection of DNA methylation. Plant Mol Biol Rep 18:361–368

    Article  CAS  Google Scholar 

  • Xu ML, Li XQ, Korban SS (2004) DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.). Theor Appl Genet 109:899–910

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Liu ZH, Liu C, Yang ZJ, Deng KJ, Peng JH, Zhou JP, Li GR, Tang ZX, Ren ZL (2008) Analysis of DNA methylation variation in wheat genetic background after alien chromatin introduction based on methylation-sensitive amplification polymorphism. Chin Sci Bull 53:58–69

    Article  CAS  Google Scholar 

  • Zhang M, Xu C, Yan H, Zhao N, von Wettstein D, Liu B (2009) Limited tissue culture-induced mutations and linked epigenetic modifications in F1 hybrids of sorghum pure lines are accompanied by increased transcription of DNA methyltransferases and 5-methylcytosine glycosylases. Plant J 57:666–679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

First, we thank the anonymous reviewers for their valuable comments that helped to considerably improve the quality of the manuscript. This work was supported by the Spanish DGICYT grant AGL2006-14249-C02-02 and by the Junta de Castilla y León grant LE052A06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Polanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, A.I., Sáiz, A., Acedo, A. et al. Analysis of genomic DNA methylation patterns in regenerated and control plants of rye (Secale cereale L.). Plant Growth Regul 70, 227–236 (2013). https://doi.org/10.1007/s10725-013-9794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9794-7

Keywords

Navigation