Skip to main content
Log in

Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We investigated the interaction between heat shock protein 70 (HSP70) and abscisic acid (ABA)-induced antioxidant response of maize to the combination of drought and heat stress. First, the increased activities of enzymes, including superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT), induced by drought were less than those by heat or combined drought and heat stress, except some individual cases (e.g. CAT in leaves, GR in roots). Second, both HSP70 synthesis and H2O2 production increased prominently under drought, heat or their combination stress; the increase in leaves induced by drought and heat combination was the highest, followed by heat and by drought, while the increase in roots had not visible difference. Third, either in leaves or roots, pretreatment with ABA inhibitor, HSP70 inhibitor and H2O2 scavenger, significantly arrested the stress-induced increase of antioxidant enzyme activities, and ABA inhibitor and H2O2 scavenger obviously suppressed HSP70 synthesis, while HSP70 inhibitor slightly heightened H2O2 accumulation. Finally, 100 μM ABA significantly enhanced the activities of antioxidant enzymes, HSP70 expression and H2O2 production under stresses in comparison with ABA-deficient mutant vp5 maize plants without pretreatment. Thus, ABA-induced H2O2 production enhances the HSP70 synthesis and up-regulates the activities of antioxidant enzymes, resulting in the suppression of cellular reactive oxygen species (ROS) levels. Our results suggest that HSP70 may play a crucial role in ABA-induced antioxidant defense of maize to drought and heat combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

CAT:

Catalase

DAB:

3,3-Diaminobenzidine

GR:

Glutathione reductase

GPx:

glutathione peroxidase

HSP70:

Heat shock protein

H2O2 :

Hydrogen peroxide

I:

KI

K:

KNK437 (N-formyl-3,4-methylenedioxy-benzylidene-g-butyrolactam)

P:

Na-pyruvate

Q:

Quercetin

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

T:

Tungstate

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–125

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bonham-Smith PC, Kapoor M, Bewley JD (1988) Exogenous application of abscisic acid or triadimefon affects the recovery of Zea mays seedlings from heat shock. Physiol Plant 73:27–30

    Article  CAS  Google Scholar 

  • Bray EA (1991) Wild-type levels of abscisic acid are not required for heat shock protein accumulation in tomato1. Plant Physiol 97:817–820

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1249

    Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zhou T, Wu X, Hong Y, Fan Z, Li H (2008) Influence of cytoplasmic heat shock protein 70 on viral infection of Nicotiana benthamiana. Mol Plant Pathol 9(6):809–817

    Article  CAS  PubMed  Google Scholar 

  • Cho EK, Choi YJ (2009) Anuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants. Biotechnol Lett 31:597–606

    Article  CAS  PubMed  Google Scholar 

  • Cho EK, Hong CB (2006) Over-expression of tobacco NtHSP70–1 contributes to drought tolerance in plants. Plant Cell Rep 25:349–358

    Article  CAS  PubMed  Google Scholar 

  • Courgeon AM, Rollet E, Becker J, Maisonhaute C, Best-Belpomme M (1988) Hydrogen peroxide (H2O2) induces actin and some heat-shock proteins in Drosophila cells. Eur J Biochem 171(1–2):163–170

    Article  CAS  PubMed  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress Responses. CMLS, Cell Mol Life Sci 57:779–795

    Article  CAS  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–649

    Article  CAS  PubMed  Google Scholar 

  • Gong M, Li Y-J, Chen SZ (1998) Abscisic acid induced thermotolerance in maize seedlings is mediated by Ca2+ and associated with antioxidant systems. J Plant Physiol 153:488–496

    CAS  Google Scholar 

  • Guo SH, Wharton W, Moseley P, Shi HL (2007) Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones 12(3):245–254

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Heikkila JJ, Papp JE, Schultz GA, Bewley JD (1984) Induction of heat shock protein messenger RNA in maize mesocotyls by water stress, abscisic acid, and wounding. Plant Physiol 76(1):270–274

    Article  CAS  PubMed  Google Scholar 

  • Hu XL, Jiang MY, Zhang JH, Tan MP, Zhang AY (2008) Cross-talk between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Growth Regul 55:183–198

    Article  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Involvement of plasma membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Huang B (2002) Protein alterations in tall fescue in response to drought stress and abscisic acid. Crop Sci 42(1):202–207

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP (2005) Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 53:1–46

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Neupert W, Brunner M (2002) The protein import motor of mitochondria. Nat Rev Mol Cell Biol 3:555–565

    Article  CAS  PubMed  Google Scholar 

  • Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J 34:868–887

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Cárdenas ML, Ryan C (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96:6553–6655

    Article  PubMed  Google Scholar 

  • Pingali PL (2001) CIMMYT 1999–2000 facts and trends. Meeting world maize needs: technological opportunities and priorities for the public sector. CIMMYT, Mexico City, pp 1–60

  • Rizhsky L, Hongjian L, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed  Google Scholar 

  • Sung DY, Guy CL (2003) Physiological and molecular assessment of altered expression of Hsc70–1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol 132:979–987

    Article  CAS  PubMed  Google Scholar 

  • Thomson AM, Brown RA, Rosenberg NJ, Izaurralde RC, Benson V (2005) Climate change impacts for the conterminous USA: an integrated assessment. Part 3. Dryland production of grain and forage crops. Clim Change 69:43–65

    Article  CAS  Google Scholar 

  • Voellmy R, Boellmann F (2007) Chaperone regulation of the heat shock protein response. Adv Exp Med Biol 594:89–99

    Article  PubMed  Google Scholar 

  • Volkov A, Panchuk II, Mullineaux PM, SchΈöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  CAS  PubMed  Google Scholar 

  • Volm M, Koomägi R, Mattern J, Stammler G (1995) Heat shock (hsp70) and resistance proteins in non-small cell lung carcinomas. Cancer Lett 95(1–2):195–200

    Article  CAS  PubMed  Google Scholar 

  • Wang CR, Wang XR, Tian Y, Xue YG, Xu XH, Sui Y, Yu HX (2008a) Oxidative stress and potential biomarkers in tomato seedlings subjected to soil lead contamination. Ecotoxicol Environ Saf 71(3):685–691

    Article  CAS  Google Scholar 

  • Wang CR, Wang XR, Tian Y, Yu HX, Gu XY, Du WC, Zhou H (2008b) Oxidative stress, defense response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ Toxicol Chem 27(4):970–977

    Article  PubMed  Google Scholar 

  • Xiong L, Ishitani M, Zhu JK (1999) Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol 119:205–212

    Article  CAS  PubMed  Google Scholar 

  • Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21:5164–5172

    Article  CAS  PubMed  Google Scholar 

  • Zhang AY, Jiang MY, Zhang JH, Tan MP, Hu XL (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475–487

    Article  CAS  PubMed  Google Scholar 

  • Zhang HY, Lü NH, Xie Y, Guo GH, Zhan JH, Chen J (2008) Influence of heat shock preconditioning on structure and function of mitochondria in gastric mucosa of severely burned animals: experiment with rats. Zhonghua Yi Xue Za Zhi 88(8):564–567

    CAS  PubMed  Google Scholar 

  • Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol 166:851–861

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 30800667 to XL Hu), China Postdoctoral Science Foundation (Grant no. 20080440824 and No. 200902357 to XL Hu) and the Natural Science Foundation of Henan Educational Committee (grant no. 2008A180011 to XL Hu). We thank Prof. Ren-gang Zhou (Hebei Academy of Agricultural Sciences, China) for HSP70 antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaohai Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Liu, R., Li, Y. et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul 60, 225–235 (2010). https://doi.org/10.1007/s10725-009-9436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-009-9436-2

Keywords

Navigation