Skip to main content
Log in

Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Our previous work has indicated that salicylic acid (SA) is involved in the development of pea plant thermotolerance and induces the gene expression of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), a key enzyme in phenylpropanoid metabolism of grape berry. However, the relationship between SA and PAL during high temperature stress remains obscure. The present experiment, using the technique of in vivo incubation of the grape berry (Vitis vinifera L. cv. Cabernet Sauvignon) tissue in the SA-contained medium, the effects of exogenous SA on the gene expression of PAL and the accumulation of polyphenols during high temperature stress were investigated. The results showed that SA could induce the accumulation of PAL mRNA and the synthesis of new PAL protein, and increase the activity under high temperature stress. A significant accumulation of phenolics was also observed in the SA-treated berries. But, the activation of PAL by SA could be blocked by the pretreatments of berry tissues with the protein synthesis inhibitor cycloheximide, and mRNA transcription inhibitor, actinomycin D, respectively. It is thus speculated that SA may induce the activation of PAL and the accumulation of pheonlics leading to the development of thermotolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MDA:

Malondialdehyde

PAL:

Phenylalanine ammonia-lyase

SA:

Salicylic acid

References

  • Anderson MD, Prasad TK, Martin BA, Steward CR (1994) Differential gene expression in chilling acclimated maize seedlings and evidence for the involvement of abcisic acid in chilling tolerance. Plant Physiol 105:331–339

    PubMed  CAS  Google Scholar 

  • Bolwell GP (1992) A role for phosphorylation in the down regulation of phenylalanine ammonia-lyase in suspension cultured cells of French bean. Phytochemistry 31:4081–4086

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Bichem 72:248–254

    Article  CAS  Google Scholar 

  • Campos-Vargas R, Nonogaki H, Suslow T, Saltveit ME (2005) Heat shock treatments delay the increase in wound-induced phenylalanine ammonia-ammonia-lyase activity by altering its expression, not its induction in Romaine lettuce (Lactuca sativa) tissue. Physiol Plant 132:82–91

    Article  CAS  Google Scholar 

  • Chen JY, Wen PF, Kong WF, Pan QH, Zhan JC, Li JM, Wan SB, Huang WD (2006) Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol 40:64–72

    Article  CAS  Google Scholar 

  • Cheng S, Purgear J, Cairney JA (1993) Simple and efficient method for isolation RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  Google Scholar 

  • Clarke SM, Mur LAJ, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–447

    Article  PubMed  CAS  Google Scholar 

  • Crosby JS, Vayda ME (1991) Stress-induced translational control in potato tubers may be mediated by polysome-associated proteins. Plant Cell 3:1013–1023

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel change in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Ding CK, Wang CY, Gross KC (2002) Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214:895–901

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Srinivasa MS, Wang LJ (2002) The phenylpropanoid pathway and plant defence-a genomics perspective. Mol Plant Pathol 3:371–390

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Fraissinet-Tachet L, Baltz R, Chong J, Kauffmann S, Fritig B, Saindrenan P (1998) Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyltransferases acting on phenylpropanoids and benzoic acid derivatives, including salicylic acid. FEBS Lett 437:319–323

    Article  PubMed  CAS  Google Scholar 

  • Grace SC, Logan BA, Adams WW (1998) Seasonal differences in foliar content of chlorogenic acid, a phenylpropanoid antioxidant, in Mahonia repens. Plant Cell Environ 21:513–521

    Article  CAS  Google Scholar 

  • Janas KM, Cvikrová M, Palagiewicz A, Szafranska K, Posmyk MM (2002) Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Sci 163:369–373

    Article  CAS  Google Scholar 

  • Jones DH (1984) Phenylalanine ammonia-lyase: regulation of its induction, and role in plant development. Phytochemistry 23:1349–1359

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lafuente MT, Zacarias L, Martinez-Telez MA, Sanchez-Ballesta MT, Granell A (2003) Phenylalanine ammonia-lyase and ethylene in relation to chilling injury as affected by fruit age in citrus. Postharvest Biol Technol 29:308–317

    Article  CAS  Google Scholar 

  • Lafuente MT, Sala JM, Zacarias L (2004) Active oxygen detoxifying enzymes and phenylalanine ammonia-lyase in the ethylene-induced chilling tolerance in citrus fruit. J Agric Food Chem 52:3606–3611

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Huang BR (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Leyva A, Jarillo JA, Salinas J, Martinez-Zapater JM (1995) Low temperature induces the accumulation of phenylalanine ammonialyase and chalcone synthase mRNA of Arabidopsis thaliana in a light-dependent manner. Plant Physiol 108:39–46

    PubMed  CAS  Google Scholar 

  • Liang X, Dron M, Schimd J, Dixon RA, Lamb CJ (1989) Development and environmental regulation of a phenylalanine ammonia-lyase-β-glucuronidase gene fusion in transgenic tobacco plants. Proc Natl Aca Sci USA 86:9284–9288

    Article  CAS  Google Scholar 

  • Liu HT, Liu YY, Pan QH, Yang HR, Zhan JC, Huang WD (2006) Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Exp Bot 57:3337–3347

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Delgado H, Dat JF, Foyer CH, Scott IM (1998) Induction of thermotolerance in potato microplants by acetyl salicylic acid and H2O2. J Exp Bot 49:713–720

    Article  CAS  Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24:445–466

    Article  CAS  Google Scholar 

  • Paliyath G, Pinhero RG, Rao MV, Murr DP, Fletcher RA (1997) Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance in maize seedlings. Plant Physiol 114:695–704

    PubMed  Google Scholar 

  • Pan QH, Zhan JC, Liu HT, Zhang JH, Chen JY, Wen PF, Huang WD (2006) Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Sci 171:226–233

    Article  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Steward CR (1994a) Evidence for chilling-induce oxidative stress in maize seedlings and a regulatory role of hydrogen peroxide. Plant Cell 6:65–74

    Article  PubMed  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Steward CR (1994b) Acclimation, hydrogen peroxide and abcisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol 105:619–627

    PubMed  CAS  Google Scholar 

  • Rivero RM, Ruiz JM, García PC, López-Lefebre LR, Sánchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ballesta MT, Zacarias L, Granell A, Lafuente MT (2000) Accumulation of PAL transcript and PAL activity as affected by heat-conditioning and low-temperature storage and its relation to chilling sensitivity in mandarin fruits. J Agric Food Chem 48:2726–2731

    Article  PubMed  CAS  Google Scholar 

  • Senaratna TD, Touchell EB, Dixon K (2000) Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Sgarbi E, Fornasiero RB, Lins AP, Bonatti PM (2003) Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci 165:951–957

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Solecka D, Kacperska A (2003) Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiol Plant 119:253–262

    Article  CAS  Google Scholar 

  • Teklemariam TA, Blake TJ (2004) Phenylalanine ammonia-lyase-induced freezing tolerance in jack pine (Pinus banksiana) seedlings treated with low, ambient levels of ultraviolet-B radiation. Physiol Plant 122:244–253

    Article  CAS  Google Scholar 

  • Thulke O, Conrath U (1998) Salicylic acid has a dual role in the activation of defence-related genes in parsley. Plant J 14:35–42

    Article  PubMed  CAS  Google Scholar 

  • Wang CY (1982) Physiological and biochemical response of plant to chilling stress. HortScience 17:173–186

    CAS  Google Scholar 

  • Wen PF, Chen JY, Kong WF, Pan QH, Wan SB, Huang WD (2005) Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. Plant Sci 169:928–934

    Article  CAS  Google Scholar 

  • Zhu Q, Dabi T, Beeche A, Yamamoto R, Lawton MA, Lamb C (1995) Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase. Plant Mol Biol 29:535–550

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants nos. 30471192 and 30671468 from the National Natural Science Foundation of China, and China Postdoctoral Science Foundation (2005038500). We also greatly thank Dr. Imre E. Somssich (Max Planck Institute for Plant Breeding Research, Kǒln, Germany) for the generous gift of parsley PAL polyclonal antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Dong Huang.

Additional information

P.-F. Wen and J.-Y. Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, PF., Chen, JY., Wan, SB. et al. Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regul 55, 1–10 (2008). https://doi.org/10.1007/s10725-007-9250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-007-9250-7

Keywords

Navigation