Skip to main content

Advertisement

Log in

Energy-Aware Scheduling for Precedence-Constrained Parallel Virtual Machines in Virtualized Data Centers

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Large scale Internet services are expected to only increase in complexity and popularity. Their energy consumption is also a major concern in data centers. Smart scheduling of their sub-services on data center Physical Machines (PM) can effectively improve their energy as well as performance. Since today servers are not energy-proportional yet, a major and traditionally neglected source of inefficiency in them is the utilization level of PMs. We present two scheduling algorithms for precedence-constrained parallel Virtual Machines (VM) in a virtualized data center where each VM represents a sub-service of the Internet-scale service. Our algorithms use virtualization technology to increase utilization of the PMs, and hence reduce total number of active PMs, to improve energy with minimal effect on makespan. Both proposed algorithms have a polynomial time complexity which make them suitable options for scheduling of large services. Simulation results using real-world services demonstrate that the algorithms are capable of increasing utilization level of PMs on average by 52 % and improving energy consumption by 18 % while the makespan of services is degraded less than 2 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, R.: Report to congress on server and data center energy efficiency: Public law 109-431 (2008)

  2. McKinsey Report. Available: http://searchstorage.techtarget.com.au/

  3. Pascual, J.A., Lorido-Botrán, T., Miguel-Alonso, J., Lozano, J.A.: Towards a Greener Cloud Infrastructure Management using Optimized Placement Policies. J. Grid Computing, 1–15 (2014)

  4. Rodero, I., Viswanathan, H., Lee, E., Gamell, M., Pompili, D., Parashar, M.: Energy-Efficient Thermal-Aware Autonomic Management of Virtualized HPC Cloud Infrastructure. J. Grid Computing 10, 447–473 (2012)

    Article  Google Scholar 

  5. Deng, Q., Meisner, D., Ramos, L., Wenisch, T.F., Bianchini, R.: Memscale: active low-power modes for main memory. ACM SIGPLAN Notices 46, 225–238 (2011)

    Article  Google Scholar 

  6. Burd, T.D., Brodersen, R.W.: Energy efficient CMOS microprocessor design. In: Proceedings of the Twenty-Eighth Hawaii International Conference on System Sciences, pp. 288–297 (1995)

  7. Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: exploiting generational behavior to reduce cache leakage power. In: Proceedings of 28th Annual International Symposium on Computer Architecture, pp. 240–251 (2001)

  8. Kaxiras, S., Martonosi, M.: Computer architecture techniques for power-efficiency. Synthesis Lectures on Computer Architecture 3, 1–207 (2008)

    Article  Google Scholar 

  9. Venkatachalam, V., Franz, M.: Power reduction techniques for microprocessor systems. ACM Comput. Surv. (CSUR) 37, 195–237 (2005)

    Article  Google Scholar 

  10. Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., et al.: Energy-Aware Server Provisioning and Load Dispatching for Connection-Intensive Internet Services, in NSDI , pp. 337–350 (2008)

  11. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud computing systems. J. Supercomput. 60, 268–280 (2012)

    Article  Google Scholar 

  12. Zhu, Q., Zhu, J., Agrawal, G.: Power-aware consolidation of scientific workflows in virtualized environments. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–12 (2010)

  13. Beloglazov, A.: Energy-Efficient Management of Virtual Machines in Data Centers for Cloud Computing, Ph.D., The University of Melbourne (2013)

  14. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems 13, 260–274 (2002)

    Article  Google Scholar 

  15. Tang, X., Li, K., Liao, G., Li, R.: List scheduling with duplication for heterogeneous computing systems. J. Parallel Distrib. Comput. 70, 323–329 (2010)

    Article  MATH  Google Scholar 

  16. Bittencourt, L., Madeira, E.M.: Towards the scheduling of multiple workflows on computational grids. J. Grid Computing 8, 419–441 (2010)

    Article  Google Scholar 

  17. Arabnejad, H., Barbosa, J.: A budget constrained scheduling algorithm for workflow applications. J. Grid Computing, 1–15 (2014)

  18. Li, K.: Energy efficient scheduling of parallel tasks on multiprocessor computers. J. Supercomput. 60, 223–247 (2012)

    Article  Google Scholar 

  19. Zong, Z., Manzanares, A., Ruan, X., Qin, X.: EAD and PEBD: two energy-aware duplication scheduling algorithms for parallel tasks on homogeneous clusters. IEEE Trans. Comput. 60, 360–374 (2011)

    Article  MathSciNet  Google Scholar 

  20. Lee, Y.C., Zomaya, A.Y.: Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Transactions on Parallel and Distributed Systems 22, 1374–1381 (2011)

    Article  Google Scholar 

  21. Sharifi, M., Shahrivari, S., Salimi, H.: PASTA: a power-aware solution to scheduling of precedence-constrained tasks on heterogeneous computing resources. Computing 95, 67–88 (2013)

    Article  MATH  Google Scholar 

  22. Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y.C., Talbi, E.-G., Zomaya, A.Y., et al.: A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems. J. Parallel Distrib. Comput. 71, 1497–1508 (2011)

    Article  Google Scholar 

  23. Li, K.: Scheduling precedence constrained tasks with reduced processor energy on multiprocessor computers. IEEE Trans. Comput. 61, 1668–1681 (2012)

    Article  MathSciNet  Google Scholar 

  24. Liu, W., Li, H., Du, W., Shi, F.: Energy-aware task clustering scheduling algorithm for heterogeneous clusters. In: Proceedings of the 2011 IEEE/ACM International Conference on Green Computing and Communications, pp. 34–37 (2011)

  25. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Characterizing and profiling scientific workflows. Futur. Gener. Comput. Syst. (2012)

  26. Ilavarasan, E., Thambidurai, P.: Low complexity performance effective task scheduling algorithm for heterogeneous computing environments. J. Comput. Sci. 3, 94–103 (2007)

    Article  Google Scholar 

  27. Daoud, M.I., Kharma, N.: A high performance algorithm for static task scheduling in heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 68, 399–409 (2008)

    Article  MATH  Google Scholar 

  28. Hagras, T., Janeèek, J.: A high performance, low complexity algorithm for compile-time task scheduling in heterogeneous systems. Parallel Comput. 31, 653–670 (2005)

    Article  Google Scholar 

  29. Liu, G., Poh, K.-L., Xie, M.: Iterative list scheduling for heterogeneous computing. J. Parallel Distrib. Comput. 65, 654–665 (2005)

    Article  MATH  Google Scholar 

  30. Yang, T., Gerasoulis, A.: DSC: Scheduling parallel tasks on an unbounded number of processors. IEEE Transactions on Parallel and Distributed Systems 5, 951–967 (1994)

    Article  Google Scholar 

  31. Cirou, B., Jeannot, E.: Triplet: a clustering scheduling algorithm for heterogeneous systems. In: International Conference on Parallel Processing Workshops, pp. 231–236 (2001)

  32. Bozdag, D., Catalyurek, U., Ozguner, F.: A task duplication based bottom-up scheduling algorithm for heterogeneous environments. In: 20th International Parallel and Distributed Processing Symposium, pp. 231–236 (2006)

  33. Nesmachnow, S., Dorronsoro, B., Pecero, J., Bouvry, P.: Energy-aware scheduling on multicore heterogeneous grid computing systems. J. Grid Computing 11, 653–680 (2013)

    Article  Google Scholar 

  34. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: Proceedings of the sixth annual ACM symposium on Theory of computing, pp. 47–63 (1974)

  35. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. WH Freeman and Company, New York (1979)

    Google Scholar 

  36. Kwok, Y.-K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput. Surv. (CSUR) 31, 406–471 (1999)

    Article  Google Scholar 

  37. Panwar, P., Lal, A., Singh, J.: A Genetic Algorithm Based Technique for Efficient Scheduling of Tasks on Multiprocessor System. In: Proceedings of the International Conference on Soft Computing for Problem Solving, pp. 911–919 (2012)

  38. Khajemohammadi, H., Fanian, A., Gulliver, T.A.: Efficient workflow scheduling for grid computing using a leveled multi-objective genetic algorithm. J. Grid Computing, 1–27 (2014)

  39. Shroff, P., Watson, D.W., Flann, N.S., Freund, R.F.: Genetic simulated annealing for scheduling data-dependent tasks in heterogeneous environments. In: 5th Heterogeneous Computing Workshop, pp. 98–117 (1996)

  40. Kong, X., Chen, X., Zhang, W., Liu, G., Ji, H.: A Dynamic Simulated Annealing Algorithm with Self-adaptive Technique for Grid Scheduling, pp. 129–133 (2009)

  41. Wu, M.-Y., Shu, W., Gu, J.: Efficient local search far DAG scheduling. IEEE Transactions on Parallel and Distributed Systems 12, 617–627 (2001)

    Article  Google Scholar 

  42. Wu, M.-Y., Shu, W., Gu, J.: Local search for DAG scheduling and task assignment. In: Proceedings of the 1997 International Conference on Parallel Processing, pp. 174–180 (1997)

  43. El-Rewini, H., Lewis, T.G.: Scheduling parallel program tasks onto arbitrary target machines. J. Parallel Distrib. Comput. 9, 138–153 (1990)

    Article  Google Scholar 

  44. Sih, G.C., Lee, E.A.: A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures. IEEE Transactions on Parallel and Distributed Systems 4, 175–187 (1993)

    Article  Google Scholar 

  45. Iverson, M.A., Özgüner, F., Follen, G.J.: Parallelizing existing applications in a distributed heterogeneous environment. In: 4th Heterogeneous Computing Workshop (1995)

  46. Baskiyar, S., SaiRanga, P.C.: Scheduling directed a-cyclic task graphs on heterogeneous network of workstations to minimize schedule length. In: International Conference on Parallel Processing Workshops, pp. 97–103 (2003)

  47. Chan, W.-Y., Li, C.-K.: Heterogeneous Dominant Sequence Cluster (HDSC): a low complexity heterogeneous scheduling algorithm. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 956–959 (1997)

  48. Shi, Z., Dongarra, J.J.: Scheduling workflow applications on processors with different capabilities. Futur. Gener. Comput. Syst. 22, 665–675 (2006)

    Article  Google Scholar 

  49. Hsu, C.-H., Slagter, K.D., Chen, S.-C., Chung, Y.-C.: Optimizing energy consumption with task consolidation in clouds. Inf. Sci. 258, 452–462 (2014)

    Article  Google Scholar 

  50. Cosnard, M., Marrakchi, M., Robert, Y., Trystram, D.: Parallel Gaussian elimination on an MIMD computer. Parallel Comput. 6, 275–296 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  51. Sinnen, O.: Task scheduling for parallel systems, vol. 60. Wiley (2007)

  52. Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News 35, 13–23 (2007)

    Article  Google Scholar 

  53. Neiger, G., Santoni, A., Leung, F., Rodgers, D., Uhlig, R.: Intel virtualization technology: Hardware support for efficient processor virtualization. Intel Technology Journal 10, 167–177 (2006)

    Article  Google Scholar 

  54. Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power and performance management of virtualized computing environments via lookahead control. Clust. Comput. 12, 1–15 (2009)

    Article  Google Scholar 

  55. Minas, L., Ellison, B.: Energy efficiency for information technology: How to reduce power consumption in servers and data centers. Intel Press (2009)

  56. SPEC Power Benchmarks. Available: http://www.spec.org/power_ssj2008/results/res2013q4/power_ssj2008-20131001-00642.html

  57. Maechling, P., Deelman, E., Zhao, L., Graves, R., Mehta, G., Gupta, N., et al.: SCEC CyberShake Workflows—Automating Probabilistic Seismic Hazard Analysis Calculations. In: Workflows for e-Science, pp. 143–163. Springer (2007)

  58. Laird, P.W.: Institutional Profile: The USC Epigenome Center (2009)

  59. Montage: An astronomical image engine. Available: http://montage.ipae.caltech.edu

  60. Abramovici, A., Althouse, W.E., Drever, R.W., Gürsel, Y., Kawamura, S., Raab, F.J., et al.: LIGO: The laser interferometer gravitational-wave observatory. Science 256, 325–333 (1992)

    Article  Google Scholar 

  61. Livny, J., Teonadi, H., Livny, M., Waldor, M.K.: High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs, PloS one, vol. 3 (2008)

  62. Deelman, E., Mehta, G., Singh, G., Su, M.-H., Vahi, K.: Pegasus: Mapping large-scale workflows to distributed resources. In: Workflows for e-Science, pp. 376–394. Springer (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar Goudarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimirad, V., Goudarzi, M. & Rajabi, A. Energy-Aware Scheduling for Precedence-Constrained Parallel Virtual Machines in Virtualized Data Centers. J Grid Computing 13, 233–253 (2015). https://doi.org/10.1007/s10723-015-9327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-015-9327-x

Keywords

Navigation