Skip to main content
Log in

Genotyping-by-sequencing to determine the genetic structure of a Tibetan medicinal plant Swertia mussotii Franch.

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Swertia mussotii Franch. has been widely used in Tibetan folk medicine as an important drug ingredient for the treatment of hepatitis and hepatobiliary disease and for homeopathic purposes. But the lacking natural resources of S. mussotii is becoming more obvious with increasing market demands. The main objective of this work was to examine genetic differentiation among S. mussotii populations from different geographical locations and use the knowledge gained to facilitate future selection of the species suitable for large-scale cultivation to meet the increasing demand for medicinal use of this plant. In this study, 68 S. mussotii Franch samples collected from Zhongda (16), Chengduo (16), and Xiewu (8) County in Qinghai Province, Xiaojin (14) and Jinchuan (14) County in Sichuan Province, China and 4 samples from related species, were genotyped using genotyping-by-sequencing (GBS) technique. GBS scored 4095 SNPs with a minor-allele frequency > 0.25 and an average read depth < 200 based on the 72 samples examined. Analyses of all SNPs provided evidence of genetic differentiation among populations. Structural and phylogenetic topological analyses supported the genetic differentiations among populations. Gene ontology annotation results revealed that genetic differentiations often occurred in genes known or hypothesized to be involved in various metabolic processes such as catalytic and transferase activity, cellular component, nucleus, biological, cellular and metabolic process. The present results also revealed a significant positive correlation between the genetic similarity and geographical distance (P = 0.032). Moreover, the adaptability of S. mussotii to the environment had a strong effect on its chemical composition and phenotypic changes. Therefore, we hypothesize that the population structure is strongly influenced by local adaptive pressure. The adaptive evolution of S. mussotii species in heterogeneous environments may play an important role in inducing genetic differentiation among different geographical populations. This is evidenced by the observed changes in phenotypic traits and chemical compounds in S. mussotii plants from different geographic locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The datasets used and analysed in the current study are available from the corresponding author upon reasonable request.

References

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19(9):1655–1664

    Article  CAS  Google Scholar 

  • Al-Hajaj N, Peterson GW, Horbach C, Al-Shamaa K, Tinker NA, Fu YB (2018) Genotyping-by-sequencing empowered genetic diversity analysis of Jordanian oat wild relative Avena sterilis. Genet Resour Crop Evol 65:2069. https://doi.org/10.1007/s10722-018-0674-x

    Article  Google Scholar 

  • Becker RA, Chambers JM, Wilks AR (1988) The new S Language: a programming environment for data analysis and graphics. Econ J. https://doi.org/10.2307/2234167

    Article  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) Tassel: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  Google Scholar 

  • Brahmachari G, Mondal S, Gangopadhyay A, Gorai D, Mukhopadhyay B, Saha S, Arun K, Brahmachari AK (2004) Swertia (Gentianaceae): chemical and pharmacological aspects. Chem Biodivers 1(11):1627–1651

    Article  CAS  Google Scholar 

  • Bryant D, Moulton V (2003) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21(2):255–265

    Article  Google Scholar 

  • Buchfink B, Xie C, Huson DH (2014) Fast and sensitive protein alignment using diamond. Nat Methods. https://doi.org/10.1038/nmeth.3176

    Article  PubMed  Google Scholar 

  • Chang-Liao WL, Chien CF, Lin LC, Tsai TH (2012) Isolation of gentiopicroside from Gentianae Radix and its pharmacokinetics on liver ischemia/reperfusion rats. J Ethnopharmacol 141:2. https://doi.org/10.1016/j.jep.2011.08.001

    Article  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2015) Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and vcftools. Bioinformatics 27(15):2156–2158

    Article  CAS  Google Scholar 

  • Dixon P (2003) Vegan, a package of r functions for community ecology. J Veg Sci 14(6):927–930

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2012) A robust, simple genotyping-by-sequencing (gbs) approach for high diversity species. PLoS ONE 6(5):e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  Google Scholar 

  • Enns JT, Ochs EP, Rensink RA (1990) VSearch: Macintosh software for experiments in visual search. Behav Res Methods 22(2):118–122

    Article  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 35: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567

    Article  Google Scholar 

  • Fang QM, Li JL, Xiao XH (1997) Resources of medicinal plants of Swertia in Sichuan province. Chin J Trad Chin Med 23(3):135–137

    Google Scholar 

  • Gao L, Zhou YF, Yan HY, Huang FY, Li GP, Wen R (2011) ChemInform abstract:two new xanthone glucosides from Swertia mussotii Franch. Cheminform. https://doi.org/10.1002/chin.201147208

    Article  Google Scholar 

  • Gleason LU, Burton RS (2016) Genomic evidence for ecological divergence against a background of population homogeneity in the marine snail Chlorostoma funebralis. Mol Ecol 25(15):3557–3573

    Article  Google Scholar 

  • He TN, Wang W, Xue CY (1999) A karyomorphological study on 5 species of Swertia (Gentianaceae). Acta Bot Boreal Occident Sin 19(3):546–551

    Google Scholar 

  • Heffelfinger C, Fragoso CA, Moreno MA, Overton JD, Mottinger JP, Zhao H, Tohme J, Dellaporta SL (2014) Flexible and scalable genotyping-by-sequencing strategies for population studies. BMC Genom 15(1):979. https://doi.org/10.1186/1471-2164-15-979

    Article  Google Scholar 

  • Jing L, Zhang YJ, Chen Z (2014) Research progress on chemical components and pharmacological actions of Swertia mussotil. Sci Technol Qinghai Agric 4:55–57

    Google Scholar 

  • Karney C (2013) Sampling exactly from the normal distribution. ACM Trans Math Softw 42:3. https://doi.org/10.1145/2710016

    Article  Google Scholar 

  • Kikuzaki H, Kawasaki Y, Kitamura S, Nakatani N (1996) Secoiridoid glucosides from Swertia mileensis. Planta Med 62(1):35–38

    Article  CAS  Google Scholar 

  • Kumar KPS, Bhowmik D, Chiranjib B, Chandira M (2010) Swertia chirayita: a traditional herb and its medicinal uses. J Chem Pharm Res 2(1):262–266

    Google Scholar 

  • Kumar Y, Kwon SJ, Coyne CJ, Hu JG, Grusak MA, Kisha T, Mcgee R, Sarker A (2014) Target region amplification polymorphism (TRAP) for assessing genetic diversity and marker-trait associations in chickpea (Cicer arietinum L.) germplasm. Genet Resour Crop Evol 61(5):965–977

    Article  CAS  Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44(W1):W242–W245. https://doi.org/10.1093/nar/gkw290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  Google Scholar 

  • Li H, Handsake B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  Google Scholar 

  • Li S, Tian CW, Wu S, Yang XW, Wang LL, Zhang TJ (2012) Studies on metabolism of total terpene ketones from Swertia mussotii with human intestinal bacteria. Chin J Chin Mater Med 37(24):3743–3747

    Google Scholar 

  • Liu HQ, Liu YR, Zhu ZQ (1996) Exploitation and protection of medicinal plant resources of Swertia in Qinghai. Chin Herb Med 2:112–114. https://doi.org/10.7501/j.issn.0253-2670.1996.2.063

    Article  Google Scholar 

  • Liu SB, Ma L, Guo HJ, Feng B, Guo YY, Li XQ, Sun WJ, Zheng LH, Zhao MG (2012) Gentiopicroside attenuates morphine rewarding effect through down regulation of GluN2B receptors in nucleus accumbens. CNS Neurosci Ther 18(8):652–658

    Article  CAS  Google Scholar 

  • Liu Y, Wang Y, Guo F, Zhan L, Mohr T, Cheng P, Huo N, Gu R, Pei D, Sun J, Tang L, Long C, Huang L, Gu YQ (2017) Deep sequencing and transcriptome analyses to identify genes involved in secoiridoid biosynthesis in the Tibetan medicinal plant Swertia mussotii. Sci Rep 7:43108. https://doi.org/10.1038/srep43108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9(1):e1003215. https://doi.org/10.1371/journal.pgen.1003215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo CT, Mao S, Chen HR, Li YL (2013) Chemical constituents from Swertia mussotii. Chin Tradit Herbal Drugs 44:8. https://doi.org/10.7501/j.issn.0253-2670.2013.08.004

    Article  CAS  Google Scholar 

  • Ma X, Liu Y, Feng XX, Zhang LX, Sun HB, Chen CC, Wang ML, Ma XQ, Tang L (2016) Biological research progress of Swertia mussotii Franch as a famous Tibetan medicine. Chin J Tradit Chin Med Pharm 31(3):206–208

    Google Scholar 

  • McCarthy FM, Wang N, Magee GB, Nanduri B, Lawrence ML, Camon EB, Barrell DG, Hill DP, Dolan ME, Williams WP, Luthe DS, Bridges SM, Burgess SC (2006) Agbase: a functional genomics resource for agriculture. BMC Genom 7:229. https://doi.org/10.1186/1471-2164-7-229

    Article  CAS  Google Scholar 

  • Melo AT, Bartaula R, Hale I (2016) GBS-SNP-CROP: a reference-optional pipeline for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping-by-sequencing data. BMC Bioinform 17(1):29. https://doi.org/10.1186/s12859-016-0879-y

    Article  CAS  Google Scholar 

  • Meng XH, Chen DD, Zhang YS, Chen GP (2012) Research progress on chemical constituents, pharmacological actions, and clinical applications of Swertia mussotii. Drugs Clinic 27(2):176–179

    CAS  Google Scholar 

  • Mezghani N, Ruess H, Tarchoun N, Amor JB, Simon PW, Spooner DM (2018) Genotyping-by-sequencing reveals the origin of the Tunisian relatives of cultivated carrot (Daucus carota). Genet Resour Crop Evol 65(5):1359–1368

    Article  CAS  Google Scholar 

  • Negi JS, Singh P, Rawat B (2011) Chemical constituents and biological importance of Swertia: a review. Curr Res Chem 3(1):1–15

    Article  CAS  Google Scholar 

  • Otto LG, Mondal P, Brassac J, Preiss S, Degenhardt J, He S, Reif JC, Sharbel TF (2017) Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association mapping. BMC Genom 18(1):599. https://doi.org/10.1186/s12864-017-3991-0

    Article  CAS  Google Scholar 

  • Shang J, Yang GY, Yang CB, Chen Z (2008) Studies on chemical constituents of Swertia officinalis in west Sichuan. J Qinghai Nor Univ. https://doi.org/10.3969/j.issn.1001-7542.2008.04.020

    Article  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47(1):264–279

    Article  Google Scholar 

  • Su X, Wu XM, Liu YP (2006) Study on the germinated characteristics of seeds of Swertia mussotii Franch. Chin Agric Sci Bull 22(2):216–218

    Google Scholar 

  • The UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(D1):D204–D212. https://doi.org/10.1093/nar/gku989

    Article  CAS  Google Scholar 

  • Wang J, Liu Y, Cai Y, Zhang F, Xia G, Xiang F (2010) Cloning and functional analysis of geraniol 10-Hydroxylase, a cytochrome P450 from Swertia mussotii Franch. Biosci Biotechnol Biochem 74(8):1583–1590

    Article  CAS  Google Scholar 

  • Wilkinson L (2011) ggplot2: elegant graphics for data analysis by H. Wickham. Biometrics 67(2):678–679

    Article  Google Scholar 

  • Xiang B, Li X, Qian J, Wang L, Ma L, Tian X, Wang Y (2016) The complete chloroplast genome sequence of the medicinal plant Swertia mussotii using the PacBio RS II platform. Molecules. https://doi.org/10.3390/molecules21081029

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie XN, Li K, Liang J (2016) Tibetan Yinchen resources research. J Tradit Chin Med Manag 24(10):74–75. https://doi.org/10.16690/j.cnki.1007-9203.2016.10.033

    Article  Google Scholar 

  • Xu S, Song N, Zhao L, Cai S, Han Z, Gao T (2017) Genomic evidence for local adaptation in the ovoviviparous marine fish Sebastiscus marmoratus with a background of population homogeneity. Sci Rep 7(1):1562. https://doi.org/10.1038/s41598-017-01742-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamahara J, Konoshima T, Sawada T, Fujimura H (1978) Biologically active principles of crude drugs: pharmacological actions of Swertia japonica extracts, swertiamarin and gentianine. Yakugaku Zasshi 98(11):1446–1451

    Article  CAS  Google Scholar 

  • Yang HL, Liu JQ (2005) Seed Germination of Swertia mussotii, an important application in Tibetan folk medicine. Acta Botanica Yunnanica 27(3):295–300. https://doi.org/10.3969/j.issn.2095-0845.2005.03.008

    Article  CAS  Google Scholar 

  • Yang H, Ding C, Duan Y, Liu J (2005) Variation of active constituents of an important tibet folk medicine Swertia mussotii Franch (gentianaceae) between artificially cultivated and naturally distributed. J Ethnopharmacol 8:98. https://doi.org/10.1016/j.jep.2004.12.015

    Article  CAS  Google Scholar 

  • Ye BG, Liu Y, Chen X (2011) Advances in pharmacological action and clinical application of Tibetan medicine Swertia mussotii Franch and its allies. Chin J Ethn Med 7:78–80. https://doi.org/10.16041/j.cnki.cn15-1175.2011.07.037

    Article  Google Scholar 

  • Yu LX, Zheng P, Bhamidimarri S, Liu XP, Main D (2017) The impact of genotyping-by-sequencing pipelines on SNP discovery and identification of markers associated with verticillium wilt resistance in Autotetraploid Alfalfa (Medicago sativa L.). Front Plant Sci 8:89. https://doi.org/10.3389/fpls.2017.00089

    Article  PubMed  PubMed Central  Google Scholar 

  • Zavinon F, Adoukonou-Sagbadja H, Keilwagen J, Lehnert H, Ordon F, Perovic D (2020) Genetic diversity and population structure in Beninese pigeon pea [Cajanus cajan (L.) Huth] landraces collection revealed by SSR and genome wide SNP markers. Genet Resour Crop Evol 67:191–208

    Article  Google Scholar 

  • Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina paired-end read merger. Bioinformatics 30(5):614–620

    Article  CAS  Google Scholar 

  • Zhang L, Cheng Y, Du X, Chen S, Feng X, Gao Y, Li S, Liu L, Yang M, Chen L, Peng Z, Yang Y, Luo W, Wang R, Chen W, Chai J (2015a) Swertianlarin, an herbal agent derived from Swertia mussotii Franch, attenuates liver injury, inflammation, and cholestasis in common bile duct-ligated rats. Evid Based Complement Alternat Med. https://doi.org/10.1155/2015/948376

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Allan AC, Li C, Wang Y, Yao Q (2015b) Denovo assembly and characterization of the transcriptome of the Chinese medicinal herb, Gentiana rigescens. Int J Mol Sci 16(5):11550–11573

    Article  Google Scholar 

  • Zhao JF, Liu X, Wang C, Zhang ZW, Qin SY, Zhong GY (2014) Resource survey of rare and endangered medicinal plant Swertia mussotii Franch. World Sci Tech/Mod Trad Chin Med and Mater Med 4:845–850

    Google Scholar 

  • Zhong GY, Wang CH, Liu X, Qin SY, Zhou HR, Luo WZ, Gu R, Zhao JF (2010) The resources and usage status of the commonly used Tibetan medicinal crop “Dida”. World Sci Technol/Mod Trad Chin Med Mater Med 12(1):122–128

    Google Scholar 

  • Zhou DW, Gao S, Wang H, Lei TX, Shen J, Gao J, Chen S, Yin J, Liu JQ (2015) De novo sequencing transcriptome of endemic Gentiana straminea (gentianaceae) to identify genes involved in the biosynthesis of active ingredients. Gene 575(1):160–170

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this study came from the National Natural Science Foundation of China (No. 81274185; 81573535; 81873397), Young and Middle-aged Talents of the National Ethnic Affairs Commission of the People’s Republic of China (2016-3-01), New Century Excellent Talents in University of China (NCET-13-0624), the Programme of Introducing Talents of Discipline to University of China (No. 111-B08044), Natural Science Foundation of Beijing (7202109), the Foundation of Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education (No. KLEM-ZZ201807; KLEM-ZZ201805; KLEM-ZZ201904), Minzu University of China (Collaborative Innovation Center for Ethnic Minority Development and yldxxk201819), National Innovation Training Program for College Students (GCCX2018110022), and the Innovation Class Project of Minzu University of China (SHSY2016120021).

Author information

Authors and Affiliations

Authors

Contributions

YL and YQG conceived and designed the experiments. YL, LZ and JS collected the materials. YL, FG, NH, and JS performed the experiments. YQ, YW and YL compiled and interpreted the data. YQ, YL, YW, and YQG wrote the manuscript. All authors reviewed and discussed the manuscript.

Corresponding authors

Correspondence to Yi Wang or Yue Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable. The study does not include any individual person’s data.

Ethics approval and consent to participate

Not applicable. The present study did not involve any human or animal-related data requiring ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Guo, F., Huo, N. et al. Genotyping-by-sequencing to determine the genetic structure of a Tibetan medicinal plant Swertia mussotii Franch.. Genet Resour Crop Evol 68, 469–484 (2021). https://doi.org/10.1007/s10722-020-00993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00993-6

Keywords

Navigation