Skip to main content
Log in

Genetic relationship of diploid wheat (Triticum spp.) species assessed by SSR markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Genetic diversity of 139 accessions of diploid Triticum species including Triticum urartu, Triticum boeoticum and Triticum monococcum was studied using 11 SSR (simple sequence repeats) markers. A total of 111 alleles with an average of 10 alleles per locus were detected. The polymorphism information content (PIC) of each SSR marker ranged from 0.30 to 0.90 with an average value of 0.62. Among the three Triticum species T. urartu had the highest number of total alleles (Na = 81), private alleles (Npa = 15) and showed higher genetic diversity (Hex = 0.58; PIC = 0.54). The genotypes from Turkey exhibited the highest genetic diversity (PIC = 0.6), while the least diversity was observed among 4 Georgian accessions (PIC = 0.11). Cluster analysis was able to distinguish 139 wheat accessions at the species level. The highest genetic similarity (GS) was noted between T. boeticum and T. monococcum (GS = 0.84), and the lowest between T. urartu and T. monococcum (GS = 0.46). The grouping pattern of the PCoA analysis corresponded with cluster analysis. No significant differences were found in clustering of T. urartu and T. monococcum accessions with respect to their geographic regions, while within T. boeoticum species, accessions from Iran were somewhat associated with their geographical origin and clustered as a close and separate group. The results from our study demonstrated that SSR markers were good enough for further genetic diversity analysis in einkorn wheat species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aliyev RT, Abbasov MA, Mammadov AC (2007) Genetic identification of diploid and tetraploid wheat species with RAPD markers. Turk J Biol 31(3):173–180

    CAS  Google Scholar 

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Malden

    Google Scholar 

  • Alnaddaf LM, Moualla MY, Haider N (2012a) Resolving genetic relationships among Aegilops L. and Triticum L. species using analysis of chloroplast DNA by cleaved amplified polymorphic sequence (CAPS). Asian J Agric Sci 4:270–279

    Google Scholar 

  • Alnaddaf LM, Moualla MY, Haider N (2012b) The genetic relationships among Aegilops L. and Triticum L. species. Asian J Agric Sci 4(5):352–367

    Google Scholar 

  • Arzani A (2011) Emmer (Triticum turgidum ssp. dicoccum) flour and bread. In: Preedy VR, Watson RR, Patel VB (eds) Flour and fortification in health and disease prevention. Elsevier, Amsterdam, pp 69–78

    Chapter  Google Scholar 

  • Babayeva S, Akparov Z, Abbasov M, Mammadov A, Zaifizadeh M, Street K (2009) Diversity analysis of Central Asia and Caucasian lentil (Lens culinaris Medik.) germplasm using SSR fingerprinting. Genet Resour Crop Evol 56(3):293–298

    Article  CAS  Google Scholar 

  • Bai JR, Liu KF, Jia X, Wang DW (2004) An analysis of homoeologous microsatellites from Triticum urartu, and Triticum monococcum. Plant Sci 166(2):341–347

    Article  CAS  Google Scholar 

  • Bossolini E, Krattinger SG, Keller B (2006) Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet 113:1049–1062

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandolini A, Hidalgo A, Gabriele S, Heun M (2015) Chemical composition of wild and feral diploid wheats and their bearing on domesticated wheats. J Cereal Sci 63:122–127

    Article  CAS  Google Scholar 

  • Castagna R, Gnocchi S, Perenzin M, Heun M (1997) Genetic variability of the wild diploid wheat Triticum urartu revealed by RFLP and RAPD markers. Theor Appl Genet 94(3):424–430

    Article  CAS  Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030

    Article  CAS  Google Scholar 

  • Chen S, Nelson MN, Ghamkhar K, Fu T, Cowling WA (2008) Divergent patterns of allelic diversity from similar origins, the case of oilseed rape (Brassica napus L.) in China and Australia. Genome 51:1–10

    Article  PubMed  Google Scholar 

  • Cooper R (2015) Re-discovering ancient wheat varieties as functional foods. J Tradit Complement Med 5(3):138–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhaliwal HS, Sidhu JS, Minocha JL (1993) Genetic diversity in diploid and hexaploid wheats as revealed by RAPD markers. Crop Improv 20:17–20

    Google Scholar 

  • Dvorák J, Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31

    Article  PubMed  Google Scholar 

  • Ehtemam MH, Rahiminejad MR, Saeidi H, Tabatabaei BES, Krattinger SG, Keller B (2010) Relationships among the A genomes of Triticum L. species as evidenced by SSR Markers, in Iran. Int J Mol Sci 11:4309–4325. https://doi.org/10.3390/ijms11114309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farouji AE, Khodayari H, Saeidi H, Rahiminejad MR (2015) Genetic diversity of diploid Triticum species in Iran assessed using inter-retroelement amplified polymorphisms (IRAP) markers. Biologia 70(1):52–60

    Article  CAS  Google Scholar 

  • Figliuolo G, Perrino P (2004) Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. revealed by RFLPs and SSRs. Genet Resour Crop Evol 51:519–527

    Article  CAS  Google Scholar 

  • Gashaw A, Mohammed H, Singh H (2007) Genetic divergence in selected durum wheat genotypes of ethiopian plasm. Afr Crop Sci J 15:67–72

    Google Scholar 

  • Ghaderi A, Adams MW, Nassib AM (1984) Relationship between genetic distance and heterosis for yield and morphological traits in dry edible bean and faba bean. Crop Sci 24:37–42

    Article  Google Scholar 

  • Golovnina KA, Glushkov SA, Blinov AG, Mayorov VI, Adkison LR, Goncharov NP (2007) Molecular phylogeny of the genus Triticum L. Plant Syst Evol 264:195–216

    Article  CAS  Google Scholar 

  • Gupta PK, Balyan HS, Edvards KJ, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovskly J et al (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  CAS  PubMed  Google Scholar 

  • Hajiyev ES, Akparov ZI, Aliyev RT, Saidova SV, Izzatullayeva VI, Babayeva SM, Abbasov MA (2015) Genetic polymorphism of durum wheat (Triticum durum Desf.) accessions of Azerbaijan. Russ J Genet 51:863–870

    Article  CAS  Google Scholar 

  • Hammer K, Filatenko AA, Korzun V (2000) Microsatellite markers—a new tool for distinguishing diploid wheat species. Genet Resour Crop Evol 47(5):497–505

    Article  Google Scholar 

  • Henkrar F, El-Haddoury J, Ouabbou H, Nsarellah N, Iraqi D, Bendaou N, Udupa SM (2016) Genetic diversity reduction in improved durum wheat cultivars of Morocco as revealed by microsatellite markers. Sci Agric 73(2):134–141

    Article  Google Scholar 

  • Hidalgo A, Brandolini A (2014) Nutritional properties of einkorn wheat (Triticum monococcum L.). J Sci Food Agric 94:601–612

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    Article  CAS  PubMed  Google Scholar 

  • https://jovialfoods.com/andrea-brandolini-einkorn-researcher/

  • Izzatullayeva V, Akparov Z, Babayeva S, Ojaghi J, Abbasov M (2014) Efficiency of using RAPD and ISSR markers in evaluation of genetic diversity in sugar beet. Turk J Biol 38(4):429–438

    Article  CAS  Google Scholar 

  • Johnson BL (1975) Identification of the apparent B-genome donor of wheat. Can J Genet Cytol 17:21–39

    Article  Google Scholar 

  • Kojima T, Nagaoka T, Noda K, Ogihara Y (1998) Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers. Theor Appl Genet 96:37–45

    Article  CAS  Google Scholar 

  • Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat Part 1. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109

    Article  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: integrated analysis enviornment for genetic marker data. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Luan SS, Chiang TY, Gong X (2006) High genetic diversity vs. low genetic differentiation in Nouelia insignis (Asteraceae), a narrowly distributed and endemic species in China, revealed by ISSR fingerprinting. Ann Bot 98:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaki M, Naghavi MR, Alizadeh H, Potki P, Kazemi M, Pirseyedi SM, Mardi M, Fakhre-Tabatabaei SM (2006) Study of genetic variation in wild diploid wheat (Triticum boeoticum) from Iran using AFLP markers. Iran J Biotech 4:269–274

    CAS  Google Scholar 

  • Mandy G (1970) New concept of the origin of Triticum aestivum. Acta Agron Hung 19:413–417

    Google Scholar 

  • McLauchlan A, Henry RJ, Issac PG, Edwards KJ (2001) Microsatellite analysis in cultivated hexaploid wheat and wild wheat relatives. In: Henry RJ (ed) Plant genotyping: the DNA fingerprinting of plants. CABI Publishing, Wallingford, pp 147–159

    Chapter  Google Scholar 

  • Medini M, Hamza S, Rebai A, Baum M (2005) Analysis of genetic diversity in tunisian durum wheat cultivars and related wild species by SSR and AFLP markers. Genet Resour Crop Evol 52:21–31

    Article  CAS  Google Scholar 

  • Mizumoto K, Hirosawa S, Nakamura C, Takumi S (2002) Nuclear and chloroplast genome genetic diversity in the wild einkorn wheat, Triticum urartu, revealed by AFLP and SSLP analyses. Hereditas 137:208–214

    Article  Google Scholar 

  • Moghaddam M, Ehdaie B, Waines JG (2000) Genetic diversity in populations of wild diploid wheat Triticum urartu Tum. ex  Gandil. revealed by isozyme markers. Genet Resour Crop Evol 47(3):323–334

    Article  Google Scholar 

  • Naghavi MR, Mardi M, Ramshini HA, Fazelinasab B (2004) Comparative analyses of the genetic diversity among bread wheat genotypes based on RAPD and SSR markers. Iran J Biotech 2:195–202

    CAS  Google Scholar 

  • Naghavi MR, Malaki M, Alizadeh H, Pirseiedi M, Mardi M (2009) An assessment of genetic diversity in wild diploid wheat Triticum boeoticum from west of Iran using RAPD, AFLP and SSR markers. J Agr Sci Tech 11:585–598

    Google Scholar 

  • Naghavi M, Ebrahimi A, Sabokdast M, Mardi M (2011) Assessment of genetic variation among five Hordeum species from Iran. Cereal Res Commun 39(4):487–496

    Article  CAS  Google Scholar 

  • Narzary D, Mahar KS, Rana TS, Ranade SA (2009) Analysis of genetic diversity among wild pomegranate in Western Himalayas using PCR methods. Sci Hortic 121:237–242

    Article  CAS  Google Scholar 

  • Ovesna J, Kucera L, Bockova R, Holubec V (2002) Characterisation of powdery mildew resistance donors within Triticum boeoticum accessions using RAPDs. Czech J Genet Plant Breed 38:117–124

    Article  Google Scholar 

  • Ozkan H, Brandolini A, Schafer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol Biol Evol 19:1797–1801

    Article  CAS  PubMed  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software http://darwin.cirad.fr/darwin

  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  • Provan J, Wolters P, Caldwell KH, Powell W (2004) High-resolution organellar genome analysis of Triticum and Aegilops sheds new light on cytoplasm evolution in wheat. Theor Appl Genet 108:1182–1190

    Article  CAS  PubMed  Google Scholar 

  • Qiao Q, Zhang CQ, Milne RI (2010) Population genetics and breeding system of Tupistra pingbianensis (Liliaceae), a naturally rare plant endemic to SW China. J Syst Evol 48:47–57

    Article  Google Scholar 

  • Singh M, Chabane K, Valkoun J, Blake T (2006) Optimum sample size for estimating gene diversity in wild wheat using AFLP markers. Genet Res Crop Evol 53:23–33

    Article  CAS  Google Scholar 

  • Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal HS (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum x T. monococcum RIL population. Theor Appl Genet 115:301–312

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Prasad M, Roy JK, Röder MS, Balyan HS, Gupta PK (2001) Intregated physical maps of 2DL, 6BS and 7DL carrying loci for grain protein content and preharvest sprouling tolerance in bread wheat. Cereal Res Commun 29:33–40

    CAS  Google Scholar 

  • Wang X, Luo G, Yang W, Li Y, Sun J, Zhan K, Liu D, Zhang A (2017) Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu. BMC Plant Biol 17:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu Z, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeshan A, Afzal M, Alghamdi SS, Kettener K, Ali M, Mubushar M, Ahmad S (2016) Evaluation of genetic diversity among the Pakistani wheat (Triticum aestivum L.) lines through random molecular markers. Braz Arch Biol Technol 59:1

    Article  Google Scholar 

  • Zhao X, Ma Y, Sun W, Wen X, Milne R (2012) High genetic diversity and low differentiation of Michelia coriacea (Magnoliaceae), a critically endangered endemic in Southeast Yunnan, China. Int J Mol Sci 13:4396–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mary Osenga for excellent technical assistance. The current research was done within Fulbright scholarship of USA (2016) and with financial support of NDSU (USA) and ANAS-TUBITAK bilateral program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehraj Abbasov.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasov, M., Akparov, Z., Gross, T. et al. Genetic relationship of diploid wheat (Triticum spp.) species assessed by SSR markers. Genet Resour Crop Evol 65, 1441–1453 (2018). https://doi.org/10.1007/s10722-018-0629-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-018-0629-2

Keywords

Navigation