Skip to main content
Log in

Glycation-mediated protein crosslinking and stiffening in mouse lenses are inhibited by carboxitin in vitro

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Proteins in the eye lens have negligible turnover and therefore progressively accumulate chemical modifications during aging. Carbonyls and oxidative stresses, which are intricately linked to one another, predominantly drive such modifications. Oxidative stress leads to the loss of glutathione (GSH) and ascorbate degradation; this in turn leads to the formation of highly reactive dicarbonyl compounds that react with proteins to form advanced glycation end products (AGEs). The formation of AGEs leads to the crosslinking and aggregation of proteins contributing to lens aging and cataract formation. To inhibit AGE formation, we developed a disulfide compound linking GSH diester and mercaptoethylguanidine, and we named it carboxitin. Bovine lens organ cultured with carboxitin showed higher levels of GSH and mercaptoethylguanidine in the lens nucleus. Carboxitin inhibited erythrulose-mediated mouse lens protein crosslinking, AGE formation and the formation of 3-deoxythreosone, a major ascorbate-derived AGE precursor in the human lens. Carboxitin inhibited the glycation-mediated increase in stiffness in organ-cultured mouse lenses measured using compressive mechanical strain. Delivery of carboxitin into the lens increases GSH levels, traps dicarbonyl compounds and inhibits AGE formation. These properties of carboxitin could be exploited to develop a therapy against the formation of AGEs and the increase in stiffness that causes presbyopia in aging lenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andley, U.P.: Crystallins in the eye: function and pathology. Prog. Retin. Eye Res. 26(1), 78–98 (2007). https://doi.org/10.1016/j.preteyeres.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  2. Biemel, K.M., Friedl, D.A., Lederer, M.O.: Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound. J. Biol. Chem. 277(28), 24907–24915 (2002). https://doi.org/10.1074/jbc.M202681200

    Article  CAS  PubMed  Google Scholar 

  3. Bonet Serra, B., Barrio Merino, A., Quintanar Rioja, A., Alaves Buforn, M., Nevado Santos, M.: Steatosis and cirrhosis secondary to insulin resistance in children. Possible physiopathological mechanisms. An. Esp. Pediatr. 56(4), 353–356 (2002)

    Article  CAS  Google Scholar 

  4. Bron, A.J., Vrensen, G.F., Koretz, J., Maraini, G., Harding, J.J.: The ageing lens. Ophthalmologica. 214(1), 86–104 (2000). https://doi.org/10.1159/000027475

    Article  CAS  PubMed  Google Scholar 

  5. Chang, D., Zhang, X., Rong, S., Sha, Q., Liu, P., Han, T., Pan, H.: Serum antioxidative enzymes levels and oxidative stress products in age-related cataract patients. Oxidative Med. Cell. Longev. 2013, 587826–587827 (2013). https://doi.org/10.1155/2013/587826

    Article  CAS  Google Scholar 

  6. Cheng, R., Lin, B., Lee, K.W., Ortwerth, B.J.: Similarity of the yellow chromophores isolated from human cataracts with those from ascorbic acid-modified calf lens proteins: evidence for ascorbic acid glycation during cataract formation. Biochim. Biophys. Acta. 1537(1), 14–26 (2001). https://doi.org/10.1016/s0925-4439(01)00051-5

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, C., Gokhin, D.S., Nowak, R.B., Fowler, V.M.: Sequential application of glass coverslips to assess the compressive stiffness of the mouse lens: strain and morphometric analyses. J. Vis. Exp. (111), (2016). https://doi.org/10.3791/53986

  8. Fan, X., Reneker, L.W., Obrenovich, M.E., Strauch, C., Cheng, R., Jarvis, S.M., Ortwerth, B.J., Monnier, V.M.: Vitamin C mediates chemical aging of lens crystallins by the Maillard reaction in a humanized mouse model. Proc. Natl. Acad. Sci. U. S. A. 103(45), 16912–16917 (2006). https://doi.org/10.1073/pnas.0605101103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fricke, T.R., Tahhan, N., Resnikoff, S., Papas, E., Burnett, A., Ho, S.M., Naduvilath, T., Naidoo, K.S.: Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling. Ophthalmology. 125(10), 1492–1499 (2018). https://doi.org/10.1016/j.ophtha.2018.04.013

    Article  PubMed  Google Scholar 

  10. Fujioka, M., Tanaka, M.: Enzymic and chemical synthesis of epilson-N-(L-propionyl-2)-L-lysine. Eur. J. Biochem. 90(2), 297–300 (1978). https://doi.org/10.1111/j.1432-1033.1978.tb12603.x

    Article  CAS  PubMed  Google Scholar 

  11. Gakamsky, A., Duncan, R.R., Howarth, N.M., Dhillon, B., Buttenschon, K.K., Daly, D.J., Gakamsky, D.: Tryptophan and non-tryptophan fluorescence of the eye Lens proteins provides diagnostics of cataract at the molecular level. Sci. Rep. 7, 40375 (2017). https://doi.org/10.1038/srep40375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gangadhariah, M.H., Mailankot, M., Reneker, L., Nagaraj, R.H.: Inhibition of methylglyoxal-mediated protein modification in glyoxalase I overexpressing mouse lenses. J. Ophthalmol. 2010, 274317–274317 (2010). https://doi.org/10.1155/2010/274317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garlick, R.L., Mazer, J.S., Chylack Jr., L.T., Tung, W.H., Bunn, H.F.: Nonenzymatic glycation of human lens crystallin. Effect of aging and diabetes mellitus. J. Clin. Invest. 74(5), 1742–1749 (1984). https://doi.org/10.1172/JCI111592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garner, W.H., Garner, M.H.: Protein disulfide levels and Lens elasticity modulation: applications for presbyopia. Invest. Ophthalmol. Vis. Sci. 57(6), 2851–2863 (2016). https://doi.org/10.1167/iovs.15-18413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glomb, M.A., Monnier, V.M.: Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J. Biol. Chem. 270(17), 10017–10026 (1995). https://doi.org/10.1074/jbc.270.17.10017

    Article  CAS  PubMed  Google Scholar 

  16. Glomb, M.A., Pfahler, C.: Amides are novel protein modifications formed by physiological sugars. J. Biol. Chem. 276(45), 41638–41647 (2001). https://doi.org/10.1074/jbc.M103557200

    Article  CAS  PubMed  Google Scholar 

  17. Haik Jr., G.M., Lo, T.W., Thornalley, P.J.: Methylglyoxal concentration and glyoxalase activities in the human lens. Exp. Eye Res. 59(4), 497–500 (1994). https://doi.org/10.1006/exer.1994.1135

    Article  CAS  PubMed  Google Scholar 

  18. Hains, P.G., Truscott, R.J.: Age-dependent deamidation of lifelong proteins in the human lens. Invest. Ophthalmol. Vis. Sci. 51(6), 3107–3114 (2010). https://doi.org/10.1167/iovs.09-4308

    Article  PubMed  PubMed Central  Google Scholar 

  19. Harding, J.J.: Free and protein-bound glutathione in normal and cataractous human lenses. Biochem. J. 117(5), 957–960 (1970). https://doi.org/10.1042/bj1170957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hooi, M.Y., Truscott, R.J.: Racemisation and human cataract. D-Ser, D-Asp/Asn and D-Thr are higher in the lifelong proteins of cataract lenses than in age-matched normal lenses. Age (Dordr). 33(2), 131–141 (2011). https://doi.org/10.1007/s11357-010-9171-7

    Article  CAS  Google Scholar 

  21. Horwitz, J.: Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. U. S. A. 89(21), 10449–10453 (1992). https://doi.org/10.1073/pnas.89.21.10449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Jong, W.W., Mulders, J.W., Voorter, C.E., Berbers, G.A., Hoekman, W.A., Bloemendal, H.: Post-translational modifications of eye lens crystallins: crosslinking, phosphorylation and deamidation. Adv. Exp. Med. Biol. 231, 95–108 (1988). https://doi.org/10.1007/978-1-4684-9042-8_8

    Article  PubMed  Google Scholar 

  23. Kisic, B., Miric, D., Zoric, L., Ilic, A., Dragojevic, I.: Antioxidant capacity of lenses with age-related cataract. Oxidative Med. Cell. Longev. (2012), 467130 (2012). https://doi.org/10.1155/2012/467130

  24. Kodama, T., Takemoto, L.: Characterization of disulfide-linked crystallins associated with human cataractous lens membranes. Invest. Ophthalmol. Vis. Sci. 29(1), 145–149 (1988)

    CAS  PubMed  Google Scholar 

  25. Kumar, M.S., Koteiche, H.A., Claxton, D.P., McHaourab, H.S.: Disulfide cross-links in the interaction of a cataract-linked alphaA-crystallin mutant with betaB1-crystallin. FEBS Lett. 583(1), 175–179 (2009). https://doi.org/10.1016/j.febslet.2008.11.047

    Article  CAS  PubMed  Google Scholar 

  26. Lange, J.N., Wood, K.D., Knight, J., Assimos, D.G., Holmes, R.P.: Glyoxal formation and its role in endogenous oxalate synthesis. Adv. Urol. 2012, 819202 (2012). https://doi.org/10.1155/2012/819202

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lederer, M.O., Klaiber, R.G.: Cross-linking of proteins by Maillard processes: characterization and detection of lysine-arginine cross-links derived from glyoxal and methylglyoxal. Bioorg. Med. Chem. 7(11), 2499–2507 (1999). https://doi.org/10.1016/s0968-0896(99)00212-6

    Article  CAS  PubMed  Google Scholar 

  28. Lund, A.L., Smith, J.B., Smith, D.L.: Modifications of the water-insoluble human lens alpha-crystallins. Exp. Eye Res. 63(6), 661–672 (1996). https://doi.org/10.1006/exer.1996.0160

    Article  CAS  PubMed  Google Scholar 

  29. Lyons, T.J., Silvestri, G., Dunn, J.A., Dyer, D.G., Baynes, J.W.: Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes. 40(8), 1010–1015 (1991). https://doi.org/10.2337/diab.40.8.1010

    Article  CAS  PubMed  Google Scholar 

  30. McAvoy, J.W., Chamberlain, C.G., de Iongh, R.U., Hales, A.M., Lovicu, F.J.: Lens development. Eye (Lond.). 13(Pt 3b), 425–437 (1999). https://doi.org/10.1038/eye.1999.117

    Article  Google Scholar 

  31. Monnier, V.M., Nagaraj, R.H., Portero-Otin, M., Glomb, M., Elgawish, A.H., Sell, D.R., Friedlander, M.A.: Structure of advanced Maillard reaction products and their pathological role. Nephrol. Dial. Transplant. 11(Suppl 5), 20–26 (1996). https://doi.org/10.1093/ndt/11.supp5.20

    Article  CAS  PubMed  Google Scholar 

  32. Nagaraj, R.H., Sell, D.R., Prabhakaram, M., Ortwerth, B.J., Monnier, V.M.: High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis. Proc. Natl. Acad. Sci. U. S. A. 88(22), 10257–10261 (1991). https://doi.org/10.1073/pnas.88.22.10257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagaraj, R.H., Linetsky, M., Stitt, A.W.: The pathogenic role of Maillard reaction in the aging eye. Amino Acids. 42(4), 1205–1220 (2012). https://doi.org/10.1007/s00726-010-0778-x

    Article  CAS  PubMed  Google Scholar 

  34. Nandi, S.K., Nahomi, R.B., Rankenberg, J., Glomb, M.A., Nagaraj, R.H.: Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of alpha-crystallin: implications for lens aging and presbyopia. J. Biol. Chem. 295(17), 5701–5716 (2020). https://doi.org/10.1074/jbc.RA120.012604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nemet, I., Monnier, V.M.: Vitamin C degradation products and pathways in the human lens. J. Biol. Chem. 286(43), 37128–37136 (2011). https://doi.org/10.1074/jbc.M111.245100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petrash, J.M.: Aging and age-related diseases of the ocular lens and vitreous body. Invest. Ophthalmol. Vis. Sci. 54(14), ORSF54-59 (2013). https://doi.org/10.1167/iovs.13-12940

    Article  Google Scholar 

  37. Rakete, S., Nagaraj, R.H.: Identification of kynoxazine, a novel fluorescent product of the reaction between 3-hydroxykynurenine and erythrulose in the human lens, and its role in protein modification. J. Biol. Chem. 291(18), 9596–9609 (2016). https://doi.org/10.1074/jbc.M116.716621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reddy, V.N.: Glutathione and its function in the lens – an overview. Exp. Eye Res. 50(6), 771–778 (1990). https://doi.org/10.1016/0014-4835(90)90127-g

    Article  CAS  PubMed  Google Scholar 

  39. Renna, A., Vejarano, L.F., De la Cruz, E., Alio, J.L.: Pharmacological treatment of presbyopia by novel binocularly instilled eye drops: a pilot study. Ophthalmol. Ther. 5(1), 63–73 (2016). https://doi.org/10.1007/s40123-016-0050-x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sasaki, H., Giblin, F.J., Winkler, B.S., Chakrapani, B., Leverenz, V., Shu, C.C.: A protective role for glutathione-dependent reduction of dehydroascorbic acid in lens epithelium. Invest. Ophthalmol. Vis. Sci. 36(9), 1804–1817 (1995)

    CAS  PubMed  Google Scholar 

  41. Sell, D.R., Monnier, V.M.: Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J. Biol. Chem. 264(36), 21597–21602 (1989)

    Article  CAS  Google Scholar 

  42. Shamsi, F.A., Lin, K., Sady, C., Nagaraj, R.H.: Methylglyoxal-derived modifications in lens aging and cataract formation. Invest. Ophthalmol. Vis. Sci. 39(12), 2355–2364 (1998)

    CAS  PubMed  Google Scholar 

  43. Sharma, K.K., Santhoshkumar, P.: Lens aging: effects of crystallins. Biochim. Biophys. Acta. 1790(10), 1095–1108 (2009). https://doi.org/10.1016/j.bbagen.2009.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smuda, M., Henning, C., Raghavan, C.T., Johar, K., Vasavada, A.R., Nagaraj, R.H., Glomb, M.A.: Comprehensive analysis of maillard protein modifications in human lenses: effect of age and cataract. Biochemistry. 54(15), 2500–2507 (2015). https://doi.org/10.1021/bi5013194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Szabo, C., Bryk, R., Zingarelli, B., Southan, G.J., Gahman, T.C., Bhat, V., Salzman, A.L., Wolff, D.J.: Pharmacological characterization of guanidinoethyldisulphide (GED), a novel inhibitor of nitric oxide synthase with selectivity towards the inducible isoform. Br. J. Pharmacol. 118(7), 1659–1668 (1996). https://doi.org/10.1111/j.1476-5381.1996.tb15589.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taylor, A., Davies, K.J.: Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens. Free Radic. Biol. Med. 3(6), 371–377 (1987). https://doi.org/10.1016/0891-5849(87)90015-3

    Article  CAS  PubMed  Google Scholar 

  47. Tessier, F., Obrenovich, M., Monnier, V.M.: Structure and mechanism of formation of human lens fluorophore LM-1. Relationship to vesperlysine A and the advanced Maillard reaction in aging, diabetes, and cataractogenesis. J. Biol. Chem. 274(30), 20796–20804 (1999). https://doi.org/10.1074/jbc.274.30.20796

    Article  CAS  PubMed  Google Scholar 

  48. Thornalley, P.K.: Esterification of reduced glutathione. Biochem. J. 275(Pt 2), 535–539 (1991). https://doi.org/10.1042/bj2750535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thornalley, P.J.: The glyoxalase system in health and disease. Mol. Asp. Med. 14(4), 287–371 (1993). https://doi.org/10.1016/0098-2997(93)90002-u

    Article  CAS  Google Scholar 

  50. du Toit, R.: How to prescribe spectacles for presbyopia. Community Eye Health. 19(57), 12–13 (2006)

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Saving Sight, Kansas City, MO, for providing the human lenses.

Funding

This work was supported by the National Institutes of Health Grants EY028836 and EY023286 (RHN) and an RPB challenge grant to the Department of Ophthalmology, University of Colorado.

Author information

Authors and Affiliations

Authors

Contributions

RHN and ML conceptualized the project. SKN, JR, SR and RBN conducted the experiments. SKN, SR, JR and RHN analyzed the results. All authors wrote the paper and approved the manuscript.

Corresponding author

Correspondence to Ram H. Nagaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with regard to the contents of this article.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All animal experiments were reviewed and approved by the University of Colorado Institutional Animal Care and Use Committee (IACUC) and performed under adherence to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1

Commercial erythrulose contains minute levels of glyoxal. (a) Reversed-phase column chromatography elusion profiles of quinoxaline, erythrulose, OPD-derivatized erythrulose and erythrulose pretreated with aminoguanidine hydrochloride (AGH) and then derivatized with OPD. The arrow points to glyoxal-Q. (b) Quantification of the glyoxal content in erythrulose. (DOCX 219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, S.K., Rankenberg, J., Rakete, S. et al. Glycation-mediated protein crosslinking and stiffening in mouse lenses are inhibited by carboxitin in vitro. Glycoconj J 38, 347–359 (2021). https://doi.org/10.1007/s10719-020-09961-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09961-9

Keywords

Navigation