Skip to main content

Advertisement

Log in

Exploring the link between ceramide and ionizing radiation

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The aim of radiotherapy is to eradicate cancer cells with ionizing radiation; tumor cell death following irradiation can be induced by several signaling pathways, most of which are triggered as a consequence of DNA damage, the primary and major relevant cell response to radiation. Several lines of evidence demonstrated that ceramide, a crucial sensor and/or effector of different signalling pathways promoting cell cycle arrest, death and differentiation, is directly involved in the molecular mechanisms underlying cellular response to irradiation. Most of the studies strongly support a direct relationship between ceramide accumulation and radiation-induced cell death, mainly apoptosis; for this reason, defining the contribution of the multiple metabolic pathways leading to ceramide formation and the causes of its dysregulated metabolism represent the main goal in order to elucidate the ceramide-mediated signaling in radiotherapy. In this review, we summarize the current knowledge concerning the different routes leading to ceramide accumulation in radiation-induced cell response with particular regard to the role of the enzymes involved in both ceramide neogenesis and catabolism. Emphasis is placed on sphingolipid breakdown as mechanism of ceramide generation activated following cell irradiation; the functional relevance of this pathway, and the role of glycosphingolipid glycohydrolases as direct targets of ionizing radiation are also discussed. These new findings add a further attractive point of investigation to better define the complex interplay between sphingolipid metabolism and radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zelefsky, M.J., Fuks, Z.V.I., Hunt, M., Lee, H.J., Lombardi, D., Ling, C.C., Reuter, V.E., Venkatraman, E.S., Leibel, S.A.: High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J Urol 166, 876–881 (2001)

    Article  PubMed  CAS  Google Scholar 

  2. Haimovitz-Friedman, A., Kan, C.C., Ehleiter, D., Persaud, R.S., McLoughlin, M., Fuks, Z., Kolesnick, R.N.: Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180, 525–535 (1994)

    Article  PubMed  CAS  Google Scholar 

  3. Kolesnick, R., Fuks, Z.: Radiation and ceramide-induced apoptosis. Oncogene 22, 5897–5906 (2003)

    Article  PubMed  CAS  Google Scholar 

  4. Zhang, Y., Yao, B., Delikat, S., Bayoumy, S., Lin, X.H., Basu, S., McGinley, M., Chan-Hui, P.Y., Lichenstein, H., Kolesnick, R.: Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89, 63–72 (1997)

    Article  PubMed  CAS  Google Scholar 

  5. Chalfant, C.E., Rathman, K., Pinkerman, R.L., Wood, R.E., Obeid, L.M., Ogretmen, B., Hannun, Y.A.: De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J Biol Chem 277, 12587–12595 (2002)

    Article  PubMed  CAS  Google Scholar 

  6. Kashiwagi, K., Shirai, Y., Kuriyama, M., Sakai, N., Saito, N.: Importance of C1B domain for lipid messenger-induced targeting of protein kinase C. J Biol Chem 277, 18037–18045 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. Huwiler, A., Brunner, J., Hummel, R., Vervoordeldonk, M., Stabel, S., van den Bosch, H., Pfeilschifter, J.: Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci U S A 93, 6959–6963 (1996)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Gulbins, E., Bissonnette, R., Mahboubi, A., Martin, S., Nishioka, W., Brunner, T., Baier, G., Baier-Bitterlich, G., Byrd, C., Lang, F., et al.: FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity 2, 341–351 (1995)

    Article  PubMed  CAS  Google Scholar 

  9. Gulbins, E., Grassme, H.: Ceramide and cell death receptor clustering. Biochim Biophys Acta 1585, 139–145 (2002)

    Article  PubMed  CAS  Google Scholar 

  10. Huwiler, A., Johansen, B., Skarstad, A., Pfeilschifter, J.: Ceramide binds to the CaLB domain of cytosolic phospholipase A2 and facilitates its membrane docking and arachidonic acid release. FASEB J 15, 7–9 (2001)

    PubMed  CAS  Google Scholar 

  11. Deiss, L.P., Galinka, H., Berissi, H., Cohen, O., Kimchi, A.: Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J 15, 3861–3870 (1996)

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Gulbins, E., Szabo, I., Baltzer, K., Lang, F.: Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proc Natl Acad Sci U S A 94, 7661–7666 (1997)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Lepple-Wienhues, A., Belka, C., Laun, T., Jekle, A., Walter, B., Wieland, U., Welz, M., Heil, L., Kun, J., Busch, G., Weller, M., Bamberg, M., Gulbins, E., Lang, F.: Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc Natl Acad Sci U S A 96, 13795–13800 (1999)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Westwick, J.K., Bielawska, A.E., Dbaibo, G., Hannun, Y.A., Brenner, D.A.: Ceramide activates the stress-activated protein kinases. J Biol Chem 270, 22689–22692 (1995)

    Article  PubMed  CAS  Google Scholar 

  15. Basu, S., Bayoumy, S., Zhang, Y., Lozano, J., Kolesnick, R.: BAD enables ceramide to signal apoptosis via Ras and Raf-1. J Biol Chem 273, 30419–30426 (1998)

    Article  PubMed  CAS  Google Scholar 

  16. Cremesti, A.E., Goni, F.M., Kolesnick, R.: Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531, 47–53 (2002)

    Article  PubMed  CAS  Google Scholar 

  17. Cremesti, A., Paris, F., Grassme, H., Holler, N., Tschopp, J., Fuks, Z., Gulbins, E., Kolesnick, R.: Ceramide enables Fas to cap and kill. J Biol Chem 276, 23954–23961 (2001)

    Article  PubMed  CAS  Google Scholar 

  18. Kolesnick, R.N., Goni, F.M., Alonso, A.: Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 184, 285–300 (2000)

    Article  PubMed  CAS  Google Scholar 

  19. Hueber, A.O., Bernard, A.M., Herincs, Z., Couzinet, A., He, H.T.: An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep 3, 190–196 (2002)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Zundel, W., Giaccia, A.: Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by stress. Genes Dev 12, 1941–1946 (1998)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Rehemtulla, A., Hamilton, C.A., Chinnaiyan, A.M., Dixit, V.M.: Ultraviolet radiation-induced apoptosis is mediated by activation of CD-95 (Fas/APO-1). J Biol Chem 272, 25783–25786 (1997)

    Article  PubMed  CAS  Google Scholar 

  22. Aureli, M., Bassi, R., Prinetti, A., Chiricozzi, E., Pappalardi, B., Chigorno, V., Di Muzio, N., Loberto, N., Sonnino, S.: Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content. Glycoconj J 29, 585 (2012)

    Article  PubMed  CAS  Google Scholar 

  23. Spiegel, S., Foster, D., Kolesnick, R.: Signal transduction through lipid second messengers. Curr Opin Cell Biol 8, 159–167 (1996)

    Article  PubMed  CAS  Google Scholar 

  24. Hannun, Y.A., Luberto, C., Argraves, K.M.: Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40, 4893–4903 (2001)

    Article  PubMed  CAS  Google Scholar 

  25. Merrill Jr., A.H., Schmelz, E.M., Dillehay, D.L., Spiegel, S., Shayman, J.A., Schroeder, J.J., Riley, R.T., Voss, K.A., Wang, E.: Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142, 208–225 (1997)

    Article  PubMed  CAS  Google Scholar 

  26. Mandon, E.C., Ehses, I., Rother, J., van Echten, G., Sandhoff, K.: Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem 267, 11144–11148 (1992)

    PubMed  CAS  Google Scholar 

  27. White-Gilbertson, S., Mullen, T., Senkal, C., Lu, P., Ogretmen, B., Obeid, L., Voelkel-Johnson, C.: Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells. Oncogene 28, 1132–1141 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Liao, W.C., Haimovitz-Friedman, A., Persaud, R.S., McLoughlin, M., Ehleiter, D., Zhang, N., Gatei, M., Lavin, M., Kolesnick, R., Fuks, Z.: Ataxia telangiectasia-mutated gene product inhibits DNA damage-induced apoptosis via ceramide synthase. J Biol Chem 274, 17908–17917 (1999)

    Article  PubMed  CAS  Google Scholar 

  29. Mesicek, J., Lee, H., Feldman, T., Jiang, X., Skobeleva, A., Berdyshev, E.V., Haimovitz-Friedman, A., Fuks, Z., Kolesnick, R.: Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal 22, 1300–1307 (2010)

    Article  PubMed  CAS  Google Scholar 

  30. Vit, J.P., Rosselli, F.: Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis. Oncogene 22, 8645–8652 (2003)

    Article  PubMed  CAS  Google Scholar 

  31. Deng, X., Yin, X., Allan, R., Lu, D.D., Maurer, C.W., Haimovitz-Friedman, A., Fuks, Z., Shaham, S., Kolesnick, R.: Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 322, 110–115 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Santana, P., Pena, L.A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E.H., Fuks, Z., Kolesnick, R.: Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86, 189–199 (1996)

    Article  PubMed  CAS  Google Scholar 

  33. Alphonse, G., Aloy, M.T., Broquet, P., Gerard, J.P., Louisot, P., Rousson, R., Rodriguez-Lafrasse, C.: Ceramide induces activation of the mitochondrial/caspases pathway in Jurkat and SCC61 cells sensitive to gamma-radiation but activation of this sequence is defective in radioresistant SQ20B cells. Int J Radiat Biol 78, 821–835 (2002)

    Article  PubMed  CAS  Google Scholar 

  34. Mahdy, A.E., Cheng, J.C., Li, J., Elojeimy, S., Meacham, W.D., Turner, L.S., Bai, A., Gault, C.R., McPherson, A.S., Garcia, N., Beckham, T.H., Saad, A., Bielawska, A., Bielawski, J., Hannun, Y.A., Keane, T.E., Taha, M.I., Hammouda, H.M., Norris, J.S., Liu, X.: Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer. Mol Ther 17, 430–438 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Beckham, T.H., Lu, P., Cheng, J.C., Zhao, D., Turner, L.S., Zhang, X., Hoffman, S., Armeson, K.E., Liu, A., Marrison, T., Hannun, Y.A., Liu, X.: Acid ceramidase-mediated production of sphingosine 1-phosphate promotes prostate cancer invasion through upregulation of cathepsin B. Int J Cancer 131, 2034–2043 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Cheng, J.C., Bai, A., Beckham, T.H., Marrison, S.T., Yount, C.L., Young, K., Lu, P., Bartlett, A.M., Wu, B.X., Keane, B.J., Armeson, K.E., Marshall, D.T., Keane, T.E., Smith, M.T., Jones, E.E., Drake Jr., R.R., Bielawska, A., Norris, J.S., Liu, X.: Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J Clin Invest 123, 4344–4358 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Sinha, U.K., Schorn, V.J., Hochstim, C., Chinn, S.B., Zhu, S., Masood, R.: Increased radiation sensitivity of head and neck squamous cell carcinoma with sphingosine kinase 1 inhibition. Head Neck 33, 178–188 (2011)

    Article  PubMed  Google Scholar 

  38. Goni, F.M., Alonso, A.: Sphingomyelinases: enzymology and membrane activity. FEBS Lett 531, 38–46 (2002)

    Article  PubMed  CAS  Google Scholar 

  39. Schissel, S.L., Jiang, X., Tweedie-Hardman, J., Jeong, T., Camejo, E.H., Najib, J., Rapp, J.H., Williams, K.J., Tabas, I.: Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem 273, 2738–2746 (1998)

    Article  PubMed  CAS  Google Scholar 

  40. Schissel, S.L., Keesler, G.A., Schuchman, E.H., Williams, K.J., Tabas, I.: The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J Biol Chem 273, 18250–18259 (1998)

    Article  PubMed  CAS  Google Scholar 

  41. Milhas, D., Clarke, C.J., Hannun, Y.A.: Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett 584, 1887–1894 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Horres, C.R., Hannun, Y.A.: The roles of neutral sphingomyelinases in neurological pathologies. Neurochem Res 37, 1137–1149 (2012)

    Article  PubMed  CAS  Google Scholar 

  43. Nilsson, A., Duan, R.D.: Alkaline sphingomyelinases and ceramidases of the gastrointestinal tract. Chem Phys Lipids 102, 97–105 (1999)

    Article  PubMed  CAS  Google Scholar 

  44. Marathe, S., Schissel, S.L., Yellin, M.J., Beatini, N., Mintzer, R., Williams, K.J., Tabas, I.: Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling. J Biol Chem 273, 4081–4088 (1998)

    Article  PubMed  CAS  Google Scholar 

  45. Pena, L.A., Fuks, Z., Kolesnick, R.N.: Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60, 321–327 (2000)

    PubMed  CAS  Google Scholar 

  46. Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., Haimovitz-Friedman, A., Cordon-Cardo, C., Kolesnick, R.: Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293, 293–297 (2001)

    Article  PubMed  CAS  Google Scholar 

  47. Morita, Y., Perez, G.I., Paris, F., Miranda, S.R., Ehleiter, D., Haimovitz-Friedman, A., Fuks, Z., Xie, Z., Reed, J.C., Schuchman, E.H., Kolesnick, R.N., Tilly, J.L.: Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 6, 1109–1114 (2000)

    Article  PubMed  CAS  Google Scholar 

  48. Kolesnick, R.: The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest 110, 3–8 (2002)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Rodriguez-Lafrasse, C., Alphonse, G., Aloy, M.T., Ardail, D., Gerard, J.P., Louisot, P., Rousson, R.: Increasing endogenous ceramide using inhibitors of sphingolipid metabolism maximizes ionizing radiation-induced mitochondrial injury and apoptotic cell killing. Int J Cancer 101, 589–598 (2002)

    Article  PubMed  CAS  Google Scholar 

  50. Bruno, A.P., Laurent, G., Averbeck, D., Demur, C., Bonnet, J., Bettaieb, A., Levade, T., Jaffrezou, J.P.: Lack of ceramide generation in TF-1 human myeloid leukemic cells resistant to ionizing radiation. Cell Death Differ 5, 172–182 (1998)

    Article  PubMed  CAS  Google Scholar 

  51. Chmura, S.J., Nodzenski, E., Beckett, M.A., Kufe, D.W., Quintans, J., Weichselbaum, R.R.: Loss of ceramide production confers resistance to radiation-induced apoptosis. Cancer Res 57, 1270–1275 (1997)

    PubMed  CAS  Google Scholar 

  52. Aureli, M., Masilamani, A.P., Illuzzi, G., Loberto, N., Scandroglio, F., Prinetti, A., Chigorno, V., Sonnino, S.: Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett 583, 2469–2473 (2009)

    Article  PubMed  CAS  Google Scholar 

  53. Mencarelli, S., Cavalieri, C., Magini, A., Tancini, B., Basso, L., Lemansky, P., Hasilik, A., Li, Y.T., Chigorno, V., Orlacchio, A., Emiliani, C., Sonnino, S.: Identification of plasma membrane associated mature beta-hexosaminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Lett 579, 5501–5506 (2005)

    Article  PubMed  CAS  Google Scholar 

  54. Aureli, M., Loberto, N., Chigorno, V., Prinetti, A., Sonnino, S.: Remodeling of sphingolipids by plasma membrane associated enzymes. Neurochem Res 36, 1636–1644 (2011)

    Article  PubMed  CAS  Google Scholar 

  55. Kolter, T., Sandhoff, K.: Sphingolipid metabolism diseases. Biochim Biophys Acta 1758, 2057–2079 (2006)

    Article  PubMed  CAS  Google Scholar 

  56. Reddy, A., Caler, E.V., Andrews, N.W.: Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106, 157–169 (2001)

    Article  PubMed  CAS  Google Scholar 

  57. Fanzani, A., Colombo, F., Giuliani, R., Preti, A., Marchesini, S.: Cytosolic sialidase Neu2 upregulation during PC12 cells differentiation. FEBS Lett 566, 178–182 (2004)

    Article  PubMed  CAS  Google Scholar 

  58. Kopitz, J., von Reitzenstein, C., Muhl, C., Cantz, M.: Role of plasma membrane ganglioside sialidase of human neuroblastoma cells in growth control and differentiation. Biochem Biophys Res Commun 199, 1188–1193 (1994)

    Article  PubMed  CAS  Google Scholar 

  59. Monti, E., Preti, A., Venerando, B., Borsani, G.: Recent development in mammalian sialidase molecular biology. Neurochem Res 27, 649–663 (2002)

    Article  PubMed  CAS  Google Scholar 

  60. Miyagi, T., Wada, T., Yamaguchi, K.: Roles of plasma membrane-associated sialidase NEU3 in human cancers. Biochim Biophys Acta 1780, 532–537 (2008)

    Article  PubMed  CAS  Google Scholar 

  61. Miyagi, T., Wada, T., Yamaguchi, K., Hata, K., Shiozaki, K.: Plasma membrane-associated sialidase as a crucial regulator of transmembrane signalling. J Biochem 144, 279–285 (2008)

    Article  PubMed  CAS  Google Scholar 

  62. Ueno, S., Saito, S., Wada, T., Yamaguchi, K., Satoh, M., Arai, Y., Miyagi, T.: Plasma membrane-associated sialidase is up-regulated in renal cell carcinoma and promotes interleukin-6-induced apoptosis suppression and cell motility. J Biol Chem 281, 7756–7764 (2006)

    Article  PubMed  CAS  Google Scholar 

  63. Kakugawa, Y., Wada, T., Yamaguchi, K., Yamanami, H., Ouchi, K., Sato, I., Miyagi, T.: Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci U S A 99, 10718–10723 (2002)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Venerando, B., Fiorilli, A., Croci, G., Tringali, C., Goi, G., Mazzanti, L., Curatola, G., Segalini, G., Massaccesi, L., Lombardo, A., Tettamanti, G.: Acidic and neutral sialidase in the erythrocyte membrane of type 2 diabetic patients. Blood 99, 1064–1070 (2002)

    Article  PubMed  CAS  Google Scholar 

  65. Tringali, C., Anastasia, L., Papini, N., Bianchi, A., Ronzoni, L., Cappellini, M.D., Monti, E., Tettamanti, G., Venerando, B.: Modification of sialidase levels and sialoglycoconjugate pattern during erythroid and erytroleukemic cell differentiation. Glycoconj J 24, 67–79 (2007)

    Article  PubMed  CAS  Google Scholar 

  66. Valaperta, R., Chigorno, V., Basso, L., Prinetti, A., Bresciani, R., Preti, A., Miyagi, T., Sonnino, S.: Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 20, 1227–1229 (2006)

    Article  PubMed  CAS  Google Scholar 

  67. Chigorno, V., Cardace, G., Pitto, M., Sonnino, S., Ghidoni, R., Tettamanti, G.: A radiometric assay for ganglioside sialidase applied to the determination of the enzyme subcellular location in cultured human fibroblasts. Anal Biochem 153, 283–294 (1986)

    Article  PubMed  CAS  Google Scholar 

  68. Huang, Q., Shur, B.D., Begovac, P.C.: Overexpressing cell surface beta 1.4-galactosyltransferase in PC12 cells increases neurite outgrowth on laminin. J Cell Sci 108(Pt 2), 839–847 (1995)

    PubMed  CAS  Google Scholar 

  69. Neufeld, E.B., Cooney, A.M., Pitha, J., Dawidowicz, E.A., Dwyer, N.K., Pentchev, P.G., Blanchette-Mackie, E.J.: Intracellular trafficking of cholesterol monitored with a cyclodextrin. J Biol Chem 271, 21604–21613 (1996)

    Article  PubMed  CAS  Google Scholar 

  70. van Weely, S., Brandsma, M., Strijland, A., Tager, J.M., Aerts, J.M.: Demonstration of the existence of a second, non-lysosomal glucocerebrosidase that is not deficient in Gaucher disease. Biochim Biophys Acta 1181, 55–62 (1993)

    Article  PubMed  Google Scholar 

  71. Daniels, L.B., Coyle, P.J., Chiao, Y.B., Glew, R.H., Labow, R.S.: Purification and characterization of a cytosolic broad specificity beta-glucosidase from human liver. J Biol Chem 256, 13004–13013 (1981)

    PubMed  CAS  Google Scholar 

  72. Yap, T.L., Velayati, A., Sidransky, E., Lee, J.C.: Membrane-bound alpha-synuclein interacts with glucocerebrosidase and inhibits enzyme activity. Mol Genet Metab 108, 56–64 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Korschen, H.G., Yildiz, Y., Raju, D.N., Schonauer, S., Bonigk, W., Jansen, V., Kremmer, E., Kaupp, U.B., Wachten, D.: The non-lysosomal beta-glucosidase GBA2 is a non-integral membrane-associated protein at the endoplasmic reticulum (ER) and Golgi. J Biol Chem 288, 3381–3393 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yu, R.K., Macala, L.J., Taki, T., Weinfield, H.M., Yu, F.S.: Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50, 1825–1829 (1988)

    Article  PubMed  CAS  Google Scholar 

  75. Miyagi, T., Tsuiki, S.: Evidence for sialidase hydrolyzing gangliosides GM2 and GM1 in rat liver plasma membrane. FEBS Lett 206, 223–228 (1986)

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sonnino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aureli, M., Murdica, V., Loberto, N. et al. Exploring the link between ceramide and ionizing radiation. Glycoconj J 31, 449–459 (2014). https://doi.org/10.1007/s10719-014-9541-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-014-9541-y

Keywords

Navigation