Skip to main content

Advertisement

Log in

Peroxisome proliferator-activated receptor α mediates enhancement of gene expression of cerebroside sulfotransferase in several murine organs

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sulfatides, 3-O-sulfogalactosylceramides, are known to have multifunctional properties. These molecules are distributed in various tissues of mammals, where they are synthesized from galactosylceramides by sulfation at C3 of the galactosyl residue. Although this reaction is specifically catalyzed by cerebroside sulfotransferase (CST), the mechanisms underlying the transcriptional regulation of this enzyme are not understood. With respect to this issue, we previously found potential sequences of peroxisome proliferator-activated receptor (PPAR) response element on upstream regions of the mouse CST gene and presumed the possible regulation by the nuclear receptor PPARα. To confirm this hypothesis, we treated wild-type and Ppara-null mice with the specific PPARα agonist fenofibrate and examined the amounts of sulfatides and CST gene expression in various tissues. Fenofibrate treatment increased sulfatides and CST mRNA levels in the kidney, heart, liver, and small intestine in a PPARα-dependent manner. However, these effects of fenofibrate were absent in the brain or colon. Fenofibrate treatment did not affect the mRNA level of arylsulfatase A, which is the key enzyme for catalyzing desulfation of sulfatides, in any of these six tissues. Analyses of the DNA-binding activity and conventional gene expression targets of PPARα has demonstrated that fenofibrate treatment activated PPARα in the kidney, heart, liver, and small intestine but did not affect the brain or colon. These findings suggest that PPARα activation induces CST gene expression and enhances sulfatide synthesis in mice, which suggests that PPARα is a possible transcriptional regulator for the mouse CST gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ishizuka, I.: Chemistry and functional distribution of sulfoglycolipids. Prog. Lipid Res. 36, 245–319 (1997)

    Article  PubMed  CAS  Google Scholar 

  2. Takahashi, T., Suzuki, T.: Role of sulfatide in normal and pathological cells and tissues. J. Lipid Res. 53, 1437–1450 (2012)

    Article  PubMed  CAS  Google Scholar 

  3. Honke, K., Hirahara, Y., Dupree, J., Suzuki, K., Popko, B., Fukushima, K., Fukushima, J., Nagasawa, T., Yoshida, N., Wada, Y., Taniguchi, N.: Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc. Natl. Acad. Sci. U. S. A. 99, 4227–4232 (2002)

    Article  PubMed  CAS  Google Scholar 

  4. Zhang, X., Nakajima, T., Kamijo, Y., Li, G., Hu, R., Kannagi, R., Kyogashima, M., Aoyama, T., Hara, A.: Acute kidney injury induced by protein-overload nephropathy down-regulates gene expression of hepatic cerebroside sulfotransferase in mice, resulting in reduction of liver and serum sulfatides. Biochem. Biophys. Res. Commun. 390, 1382–1388 (2009)

    Article  PubMed  CAS  Google Scholar 

  5. Sheng, X., Nakajima, T., Wang, L., Zhang, X., Kamijo, Y., Takahashi, K., Tanaka, N., Sugiyama, E., Kyogashima, M., Aoyama, T., Hara, A.: Attenuation of kidney injuries maintains serum sulfatide levels dependent on hepatic synthetic ability: a possible involvement of oxidative stress. Tohoku J. Exp. Med. 227, 1–12 (2012)

    Article  PubMed  CAS  Google Scholar 

  6. Hirahara, Y., Tsuda, M., Wada, Y., Honke, K.: cDNA cloning, genomic cloning, and tissue-specific regulation of mouse cerebroside sulfotransferase. Eur. J. Biochem. 267, 1909–1916 (2000)

    Article  PubMed  CAS  Google Scholar 

  7. Podvinec, M., Kaufmann, M.R., Handschin, C., Meyer, U.A.: NUBIScan, an in silico approach for prediction of nuclear receptor response elements. Mol. Endocrinol. 16, 1269–1279 (2002)

    Article  PubMed  CAS  Google Scholar 

  8. Kimura, T., Nakajima, T., Kamijo, Y., Tanaka, N., Wang, L., Hara, A., Sugiyama, E., Tanaka, E., Gonzalez, F.J., Aoyama, T.: Hepatic cerebroside sulfotransferase is induced by PPARα activation in mice. PPAR Res. 2012, 174932 (2012)

    PubMed  Google Scholar 

  9. Lee, S.S., Pineau, T., Drago, J., Lee, E.J., Owens, J.W., Kroetz, D.L., Fernandez-Salguero, P.M., Westphal, H., Gonzalez, F.J.: Targeted disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol. Cell. Biol. 15, 3012–3022 (1995)

    PubMed  CAS  Google Scholar 

  10. Akiyama, T.E., Nicol, C.J., Fievet, C., Staels, B., Ward, J.M., Auwerx, J., Lee, S.S., Gonzalez, F.J., Peters, J.M.: Peroxisome proliferator-activated receptor-α regulates lipid homeostasis, but is not associated with obesity. J. Biol. Chem. 276, 39088–39093 (2001)

    Article  PubMed  CAS  Google Scholar 

  11. Aoyama, T., Peters, J.M., Iritani, N., Nakajima, T., Furihata, K., Hashimoto, T., Gonzalez, F.J.: Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα). J. Biol. Chem. 273, 5678–5684 (1998)

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi, K., Kamijo, Y., Hora, K., Hashimoto, K., Higuchi, M., Nakajima, T., Ehara, T., Shigematsu, H., Gonzalez, F.J., Aoyama, T.: Pretreatment by low-dose fibrates protects against acute free fatty acid-induced renal tubule toxicity by counteracting PPARα deterioration. Toxicol. Appl. Pharmacol. 252, 237–249 (2011)

    Article  PubMed  CAS  Google Scholar 

  13. Hashimoto, K., Kamijo, Y., Nakajima, T., Harada, M., Higuchi, M., Ehara, T., Shigematsu, H., Aoyama, T.: PPARα activation protects against anti-Thy1 nephritis by suppressing glomerular NF-κB signaling. PPAR Res. 2012, 976089 (2012)

    Article  PubMed  Google Scholar 

  14. Nakajima, T., Tanaka, N., Kanbe, H., Hara, A., Kamijo, Y., Zhang, X., Gonzalez, F.J., Aoyama, T.: Bezafibrate at clinically relevant doses decreases serum/liver triglycerides via down-regulation of sterol regulatory element-binding protein-1c in mice: a novel peroxisome proliferator-activated receptor α-independent mechanism. Mol. Pharmacol. 75, 782–792 (2009)

    Article  PubMed  CAS  Google Scholar 

  15. Nakajima, T., Tanaka, N., Li, G., Hu, R., Kamijo, Y., Hara, A., Aoyama, T.: Effect of bezafibrate on hepatic oxidative stress: comparison between conventional experimental doses and clinically-relevant doses in mice. Redox Rep. 15, 123–130 (2010)

    Article  PubMed  CAS  Google Scholar 

  16. Hara, A., Radin, N.S.: Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 90, 420–426 (1978)

    Article  PubMed  CAS  Google Scholar 

  17. Li, G., Hu, R., Kamijo, Y., Nakajima, T., Aoyama, T., Inoue, T., Node, K., Kannagi, R., Kyogashima, M., Hara, A.: Establishment of a quantitative, qualitative, and high-throughput analysis of sulfatides from small amounts of sera by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Anal. Biochem. 362, 1–7 (2007)

    Article  PubMed  CAS  Google Scholar 

  18. Aoyama, T., Yamano, S., Waxman, D.J., Lapenson, D.P., Meyer, U.A., Fischer, V., Tyndale, R., Inaba, T., Kalow, W., Gelboin, H.V.: Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J. Biol. Chem. 264, 10388–10395 (1989)

    PubMed  CAS  Google Scholar 

  19. Aoyama, T., Uchida, Y., Kelley, R.I., Marble, M., Hofman, K., Tonsgard, J.H., Rhead, W.J., Hashimoto, T.: A novel disease with deficiency of mitochondrial very-long-chain acyl-CoA dehydrogenase. Biochem. Biophys. Res. Commun. 191, 1369–1372 (1993)

    Article  PubMed  CAS  Google Scholar 

  20. Aoyama, T., Ueno, I., Kamijo, T., Hashimoto, T.: Rat very-long-chain acyl-CoA dehydrogenase, a novel mitochondrial acyl-CoA dehydrogenase gene product, is a rate-limiting enzyme in long-chain fatty acid β-oxidation system. cDNA and deduced amino acid sequence and distinct specificities of the cDNA-expressed protein. J. Biol. Chem. 269, 19088–19094 (1994)

    PubMed  CAS  Google Scholar 

  21. Desvergne, B., Wahli, W.: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688 (1999)

    Article  PubMed  CAS  Google Scholar 

  22. Braissant, O., Foufelle, F., Scotto, C., Dauça, M., Wahli, W.: Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology 137, 354–366 (1996)

    Article  PubMed  CAS  Google Scholar 

  23. Rakhshandehroo, M., Knoch, B., Müller, M., Kersten, S.: Peroxisome proliferator-activated receptor alpha target genes. PPAR Res. 2010, 612089 (2010)

    Article  PubMed  Google Scholar 

  24. Honke, K., Zhang, Y., Cheng, X., Kotani, N., Taniguchi, N.: Biological roles of sulfoglycolipids and pathophysiology of their deficiency. Glycoconj. J. 21, 59–62 (2004)

    Article  PubMed  CAS  Google Scholar 

  25. Bosio, A., Binczek, E., Stoffel, W.: Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc. Natl. Acad. Sci. U. S. A. 93, 13280–13285 (1996)

    Article  PubMed  CAS  Google Scholar 

  26. Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A.M., Heyman, R.A., Briggs, M., Deeb, S., Staels, B., Auwerx, J.: PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 15, 5336–5348 (1996)

    PubMed  CAS  Google Scholar 

  27. Martin, G., Schoonjans, K., Lefebvre, A.M., Staels, B., Auwerx, J.: Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARα and PPARγ activators. J. Biol. Chem. 272, 28210–28217 (1997)

    Article  PubMed  CAS  Google Scholar 

  28. Motojima, K., Passilly, P., Peters, J.M., Gonzalez, F.J., Latruffe, N.: Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor α and γ activators in a tissue- and inducer-specific manner. J. Biol. Chem. 273, 16710–16714 (1998)

    Article  PubMed  CAS  Google Scholar 

  29. Schinkel, A.H., Smit, J.J., van Tellingen, O., Beijnen, J.H., Wagenaar, E., van Deemter, L., Mol, C.A., van der Valk, M.A., Robanus-Maandag, E.C., te Riele, H.P., Berns, A.J., Borst, P.: Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491–502 (1994)

    Article  PubMed  CAS  Google Scholar 

  30. Berger, J., Albet, S., Bentejac, M., Netik, A., Holzinger, A., Roscher, A.A., Bugaut, M., Forss-Petter, S.: The four murine peroxisomal ABC-transporter genes differ in constitutive, inducible and developmental expression. Eur. J. Biochem. 265, 719–727 (1999)

    Article  PubMed  CAS  Google Scholar 

  31. Mogi, M., Abe, S., Hayashi, T., Tsutsumi, S.: Studies on the metabolic fate of fenofibrate (1). Absorption, distribution and excretion after the single and repeated administration to rats. Jpn. Pharmacol. Ther. 23, S1117–S1133 (1995)

    CAS  Google Scholar 

  32. Breimer, M.E., Hansson, G.C., Karlsson, K.A., Leffler, H.: The preparative separation of sialic acid-containing lipids from sulphate group-containing glycolipids from small intestine of different animals. Analysis by thin-layer chromatography and detection of novel species. J. Biochem. 93, 1473–1485 (1983)

    PubMed  CAS  Google Scholar 

  33. Leffler, H., Hansson, G.C., Strömberg, N.: A novel sulfoglycosphingolipid of mouse small intestine, IV3-sulfogangliotetraosylceramide, demonstrated by negative ion fast atom bombardment mass spectrometry. J. Biol. Chem. 261, 1440–1444 (1986)

    PubMed  CAS  Google Scholar 

  34. Li, G., Hu, R., Kamijo, Y., Nakajima, T., Aoyama, T., Ehara, T., Shigematsu, H., Kannagi, R., Kyogashima, M., Hara, A.: Kidney dysfunction induced by protein overload nephropathy reduces serum sulfatide levels in mice. Nephrology 14, 658–662 (2009)

    Article  PubMed  CAS  Google Scholar 

  35. Coles, L., Hay, J.B., Gray, G.M.: Factors affecting the glycosphingolipid composition of murine tissues. J. Lipid Res. 11, 158–163 (1970)

    PubMed  CAS  Google Scholar 

  36. Farwanah, H., Kolter, T.: Lipidomics of glycosphingolipids. Metabolites 2, 134–164 (2012)

    Article  CAS  Google Scholar 

  37. Honke, K., Yamane, M., Ishii, A., Kobayashi, T., Makita, A.: Purification and characterization of 3′-phosphoadenosine-5′-phosphosulfate:GalCer sulfotransferase from human renal cancer cells. J. Biochem. 119, 421–427 (1996)

    Article  PubMed  CAS  Google Scholar 

  38. Watanabe, K., Fujii, H., Takahashi, T., Kodama, M., Aizawa, Y., Ohta, Y., Ono, T., Hasegawa, G., Naito, M., Nakajima, T., Kamijo, Y., Gonzalez, F.J., Aoyama, T.: Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor α associated with age-dependent cardiac toxicity. J. Biol. Chem. 275, 22293–22299 (2000)

    Article  PubMed  CAS  Google Scholar 

  39. Kamijo, Y., Hora, K., Tanaka, N., Usuda, N., Kiyosawa, K., Nakajima, T., Gonzalez, F.J., Aoyama, T.: Identification of functions of peroxisome proliferator-activated receptor α in proximal tubules. J. Am. Soc. Nephrol. 13, 1691–1702 (2002)

    Article  PubMed  CAS  Google Scholar 

  40. Nakajima, T., Kamijo, Y., Tanaka, N., Sugiyama, E., Tanaka, E., Kiyosawa, K., Fukushima, Y., Peters, J.M., Gonzalez, F.J., Aoyama, T.: Peroxisome proliferator-activated receptor α protects against alcohol-induced liver damage. Hepatology 40, 972–980 (2004)

    PubMed  CAS  Google Scholar 

  41. Kamijo, Y., Hora, K., Nakajima, T., Kono, K., Takahashi, K., Ito, Y., Higuchi, M., Kiyosawa, K., Shigematsu, H., Gonzalez, F.J., Aoyama, T.: Peroxisome proliferator-activated receptor α protects against glomerulonephritis induced by long-term exposure to the plasticizer di-(2-ethylhexyl)phthalate. J. Am. Soc. Nephrol. 18, 176–188 (2007)

    Article  PubMed  CAS  Google Scholar 

  42. Kamijo, Y., Hora, K., Kono, K., Takahashi, K., Higuchi, M., Ehara, T., Kiyosawa, K., Shigematsu, H., Gonzalez, F.J., Aoyama, T.: PPARα protects proximal tubular cells from acute fatty acid toxicity. J. Am. Soc. Nephrol. 18, 3089–3100 (2007)

    Article  PubMed  CAS  Google Scholar 

  43. Tanaka, N., Moriya, K., Kiyosawa, K., Koike, K., Gonzalez, F.J., Aoyama, T.: PPARα activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice. J. Clin. Invest. 118, 683–694 (2008)

    PubMed  Google Scholar 

  44. Bikman, B.T., Summers, S.A.: Ceramides as modulators of cellular and whole-body metabolism. J. Clin. Invest. 121, 4222–4230 (2011)

    Article  PubMed  CAS  Google Scholar 

  45. Rivier, M., Castiel, I., Safonova, I., Ailhaud, G., Michel, S.: Peroxisome proliferator-activated receptor-α enhances lipid metabolism in a skin equivalent model. J. Invest. Dermatol. 114, 681–687 (2000)

    Article  PubMed  CAS  Google Scholar 

  46. Hanada, K.: Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16–30 (2003)

    Article  PubMed  CAS  Google Scholar 

  47. Hara, A., Kutsukake, Y., Uemura, K.I., Taketomi, T.: Anticoagulant activity of sulfatide and its anti-thrombotic effect in rabbit. J. Biochem. 113, 781–785 (1993)

    PubMed  CAS  Google Scholar 

  48. Hara, A., Uemura, K., Taketomi, T.: Sulfatide prolongs blood-coagulation time and bleeding time by forming a complex with fibrinogen. Glycoconj. J. 13, 187–194 (1996)

    Article  PubMed  CAS  Google Scholar 

  49. Kyogashima, M., Sakai, T., Onaya, J., Hara, A.: Roles of galactose and sulfate residues in sulfatides for their antagonistic functions in the blood coagulation system. Glycoconj. J. 18, 245–251 (2001)

    Article  PubMed  CAS  Google Scholar 

  50. Hara, A., Taketomi, T.: Occurrence of sulfatide as a major glycosphingolipid in WHHL rabbit serum lipoproteins. J. Biochem. 102, 83–92 (1987)

    PubMed  CAS  Google Scholar 

  51. Hu, R., Li, G., Kamijo, Y., Aoyama, T., Nakajima, T., Inoue, T., Node, K., Kannagi, R., Kyogashima, M., Hara, A.: Serum sulfatides as a novel biomarker for cardiovascular disease in patients with end-stage renal failure. Glycoconj. J. 24, 565–571 (2007)

    Article  PubMed  CAS  Google Scholar 

  52. Wang, L., Kamijo, Y., Matsumoto, A., Nakajima, T., Higuchi, M., Kannagi, R., Kyogashima, M., Aoyama, T., Hara, A.: Kidney transplantation recovers the reduction level of serum sulfatide in ESRD patients via processes correlated to oxidative stress and platelet count. Glycoconj. J. 28, 125–135 (2011)

    Article  PubMed  CAS  Google Scholar 

  53. Kamijo, Y., Wang, L., Matsumoto, A., Nakajima, T., Hashimoto, K., Higuchi, M., Kyogashima, M., Aoyama, T., Hara, A.: Long-term improvement of oxidative stress via kidney transplantation ameliorates serum sulfatide levels. Clin. Exp. Nephrol. (in press)

Download references

Acknowledgment

This work was supported in part by G.L. Sciences (Tokyo, Japan).

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Kamijo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, T., Kamijo, Y., Yuzhe, H. et al. Peroxisome proliferator-activated receptor α mediates enhancement of gene expression of cerebroside sulfotransferase in several murine organs. Glycoconj J 30, 553–560 (2013). https://doi.org/10.1007/s10719-012-9454-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9454-6

Keywords

Navigation