Skip to main content

Advertisement

Log in

Regulation of dolichol-linked glycosylation

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In the majority of congenital disorders of glycosylation, the assembly of the glycan precursor GlcNAc2Man9Glc3 on the polyprenol carrier dolichyl-pyrophosphate is compromised. Because N-linked glycosylation is essential to life, most types of congenital disorders of glycosylation represent partial losses of enzymatic activity. Consequently, increased availability of substrates along the glycosylation pathway can be beneficial to increase product formation by the compromised enzymes. Recently, we showed that increased dolichol availability and improved N-linked glycosylation can be achieved by inhibition of squalene biosynthesis. This review summarizes the current knowledge on the biosynthesis of dolichol-linked glycans with respect to deficiencies in N-linked glycosylation. Additionally, perspectives on therapeutic treatments targeting dolichol and dolichol-linked glycan biosynthesis are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schwarz, F., Aebi, M.: Mechanisms and principles of N-linked protein glycosylation. Curr. Opin. Struct. Biol. 21(5), 576–582 (2011)

    Article  PubMed  CAS  Google Scholar 

  2. Larkin, A., Imperiali, B.: The expanding horizons of asparagine-linked glycosylation. Biochemistry 50(21), 4411–4426 (2011)

    Article  PubMed  CAS  Google Scholar 

  3. Kornfeld, R., Kornfeld, S.: Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985)

    Article  PubMed  CAS  Google Scholar 

  4. Swiezewska, E., Danikiewicz, W.: Polyisoprenoids: structure, biosynthesis and function. Prog. Lipid Res. 44(4), 235–258 (2005)

    Article  PubMed  CAS  Google Scholar 

  5. Buhaescu, I., Izzedine, H.: Mevalonate pathway: a review of clinical and therapeutical implications. Clin. Biochem. 40(9–10), 575–584 (2007)

    Article  PubMed  CAS  Google Scholar 

  6. Maeda, Y., Kinoshita, T.: Dolichol-phosphate mannose synthase: structure, function and regulation. Biochim. Biophys. Acta 1780(6), 861–868 (2008)

    Article  PubMed  CAS  Google Scholar 

  7. Heesen, S., et al.: Isolation of the ALG5 locus encoding the UDP-glucose:dolichyl-phosphate glucosyltransferase from Saccharomyces cerevisiae. Eur. J. Biochem. 224(1), 71–79 (1994)

    Article  PubMed  CAS  Google Scholar 

  8. Rush, J.S., et al.: Identification and characterization of a cDNA encoding a dolichyl pyrophosphate phosphatase located in the endoplasmic reticulum of mammalian cells. J. Biol. Chem. 277(47), 45226–45234 (2002)

    Article  PubMed  CAS  Google Scholar 

  9. Rush, J.S., et al.: Recycling of dolichyl monophosphate to the cytoplasmic leaflet of the endoplasmic reticulum after the cleavage of dolichyl pyrophosphate on the lumenal monolayer. J. Biol. Chem. 283(7), 4087–4093 (2008)

    Article  PubMed  CAS  Google Scholar 

  10. van Berkel, M.A., et al.: The Saccharomyces cerevisiae CWH8 gene is required for full levels of dolichol-linked oligosaccharides in the endoplasmic reticulum and for efficient N-glycosylation. Glycobiology 9(3), 243–253 (1999)

    Article  PubMed  Google Scholar 

  11. Cantagrel, V., Lefeber, D.J.: From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases. J. Inherit. Metab. Dis. 34(4), 859–867 (2011)

    Article  PubMed  CAS  Google Scholar 

  12. Zelinger, L., et al.: A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am. J. Hum. Genet. 88(2), 207–215 (2011)

    Article  PubMed  CAS  Google Scholar 

  13. Lefeber, D.J., et al.: Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet. 7(12), e1002427 (2011)

    Article  PubMed  CAS  Google Scholar 

  14. Stoffels, M., Simon, A.: Hyper-IgD syndrome or mevalonate kinase deficiency. Curr. Opin. Rheumatol. 23(5), 419–423 (2011)

    Article  PubMed  CAS  Google Scholar 

  15. Goldfinger, S.: The inherited autoinflammatory syndrome: a decade of discovery. Trans. Am. Clin. Climatol. Assoc. 120, 413–418 (2009)

    PubMed  Google Scholar 

  16. Drenth, J.P., Haagsma, C.J., van der Meer, J.W.: Hyperimmunoglobulinemia D and periodic fever syndrome. The clinical spectrum in a series of 50 patients. International Hyper-IgD Study Group. Medicine (Baltimore) 73(3), 133–144 (1994)

    CAS  Google Scholar 

  17. Haas, D., Hoffmann, G.F.: Mevalonate kinase deficiencies: from mevalonic aciduria to hyperimmunoglobulinemia D syndrome. Orphanet J. Rare Dis. 1, 13 (2006)

    Article  PubMed  Google Scholar 

  18. Mandey, S.H., et al.: A role for geranylgeranylation in interleukin-1beta secretion. Arthritis Rheum. 54(11), 3690–3695 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. Kuijk, L.M., et al.: Statin synergizes with LPS to induce IL-1beta release by THP-1 cells through activation of caspase-1. Mol. Immunol. 45(8), 2158–2165 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. Hoffmann, G.F., et al.: Regulatory adaptation of isoprenoid biosynthesis and the LDL receptor pathway in fibroblasts from patients with mevalonate kinase deficiency. Pediatr. Res. 41(4 Pt 1), 541–546 (1997)

    Article  PubMed  CAS  Google Scholar 

  21. Rosenberg, T.: Epidemiology of hereditary ocular disorders. Dev. Ophthalmol. 37, 16–33 (2003)

    Article  PubMed  CAS  Google Scholar 

  22. Fliesler, S.J., Rapp, L.M., Hollyfield, J.G.: Photoreceptor-specific degeneration caused by tunicamycin. Nature 311(5986), 575–577 (1984)

    Article  PubMed  CAS  Google Scholar 

  23. Fliesler, S.J., Rayborn, M.E., Hollyfield, J.G.: Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin. J. Cell Biol. 100(2), 574–587 (1985)

    Article  PubMed  CAS  Google Scholar 

  24. Grunewald, S.: The clinical spectrum of phosphomannomutase 2 deficiency (CDG-Ia). Biochim. Biophys. Acta 1792(9), 827–834 (2009)

    Article  PubMed  Google Scholar 

  25. Cantagrel, V., et al.: SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell 142(2), 203–217 (2010)

    Article  PubMed  CAS  Google Scholar 

  26. Kasapkara, C.S., et al.: SRD5A3-CDG: A patient with a novel mutation. Eur. J. Paediatr. Neurol. (2012)

  27. Kranz, C., et al.: A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am. J. Hum. Genet. 80(3), 433–440 (2007)

    Article  PubMed  CAS  Google Scholar 

  28. Michele, D.E., et al.: Dystroglycan matrix receptor function in cardiac myocytes is important for limiting activity-induced myocardial damage. Circ. Res. 105(10), 984–993 (2009)

    Article  PubMed  CAS  Google Scholar 

  29. Dancourt, J., et al.: A new intronic mutation in the DPM1 gene is associated with a milder form of CDG Ie in two French siblings. Pediatr. Res. 59(6), 835–839 (2006)

    Article  PubMed  CAS  Google Scholar 

  30. Garcia-Silva, M.T., et al.: Congenital disorder of glycosylation (CDG) type Ie. A new patient. J. Inherit. Metab. Dis. 27(5), 591–600 (2004)

    Article  PubMed  CAS  Google Scholar 

  31. Imbach, T., et al.: Deficiency of dolichol-phosphate-mannose synthase-1 causes congenital disorder of glycosylation type Ie. J. Clin. Invest. 105(2), 233–239 (2000)

    Article  PubMed  CAS  Google Scholar 

  32. Kim, S., et al.: Dolichol phosphate mannose synthase (DPM1) mutations define congenital disorder of glycosylation Ie (CDG-Ie). J. Clin. Invest. 105(2), 191–198 (2000)

    Article  PubMed  CAS  Google Scholar 

  33. Lefeber, D.J., et al.: Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am. J. Hum. Genet. 85(1), 76–86 (2009)

    Article  PubMed  CAS  Google Scholar 

  34. Niehues, R., et al.: Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J. Clin. Invest. 101(7), 1414–1420 (1998)

    Article  PubMed  CAS  Google Scholar 

  35. Westphal, V., et al.: Genetic and metabolic analysis of the first adult with congenital disorder of glycosylation type Ib: long-term outcome and effects of mannose supplementation. Mol. Genet. Metab. 73(1), 77–85 (2001)

    Article  PubMed  CAS  Google Scholar 

  36. Marquardt, T., et al.: Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 94(12), 3976–3985 (1999)

    PubMed  CAS  Google Scholar 

  37. Haeuptle, M.A., et al.: Improvement of dolichol-linked oligosaccharide biosynthesis by the squalene synthase inhibitor zaragozic acid. J. Biol. Chem. 286(8), 6085–6091 (2011)

    Article  PubMed  CAS  Google Scholar 

  38. Forman, B.M., Chen, J., Evans, R.M.: Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc. Natl. Acad. Sci. U. S. A. 94(9), 4312–4317 (1997)

    Article  PubMed  CAS  Google Scholar 

  39. Abourbih, S., et al.: Effect of fibrates on lipid profiles and cardiovascular outcomes: a systematic review. Am. J. Med. 122(10), 962 e1-8 (2009)

    Google Scholar 

  40. Insel, P.A., Ostrom, R.S.: Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G protein signaling. Cell. Mol. Neurobiol. 23(3), 305–314 (2003)

    Article  PubMed  CAS  Google Scholar 

  41. Konrad, M., Merz, W.E.: Regulation of N-glycosylation. Long term effect of cyclic AMP mediates enhanced synthesis of the dolichol pyrophosphate core oligosaccharide. J. Biol. Chem. 269(12), 8659–8666 (1994)

    PubMed  CAS  Google Scholar 

  42. Konrad, M., Merz, W.E.: Long-term effect of cyclic AMP on N-glycosylation is caused by an increase in the activity of the cis-prenyltransferase. Biochem. J. 316(Pt 2), 575–581 (1996)

    PubMed  CAS  Google Scholar 

  43. Mills, E.J., et al.: Primary prevention of cardiovascular mortality and events with statin treatments: a network meta-analysis involving more than 65,000 patients. J. Am. Coll. Cardiol. 52(22), 1769–1781 (2008)

    Article  PubMed  CAS  Google Scholar 

  44. Haeuptle, M.A., Hulsmeier, A.J., Hennet, T.: HPLC and mass spectrometry analysis of dolichol-phosphates at the cell culture scale. Anal. Biochem. 396(1), 133–138 (2010)

    Article  PubMed  CAS  Google Scholar 

  45. Low, P., et al.: Effects of mevinolin treatment on tissue dolichol and ubiquinone levels in the rat. Biochim. Biophys. Acta 1165(1), 102–109 (1992)

    Article  PubMed  CAS  Google Scholar 

  46. Charlton-Menys, V., Durrington, P.N.: Squalene synthase inhibitors: clinical pharmacology and cholesterol-lowering potential. Drugs 67(1), 11–16 (2007)

    Article  PubMed  CAS  Google Scholar 

  47. Bergstrom, J.D., et al.: Discovery, biosynthesis, and mechanism of action of the zaragozic acids: potent inhibitors of squalene synthase. Annu. Rev. Microbiol. 49, 607–639 (1995)

    Article  PubMed  CAS  Google Scholar 

  48. Baxter, A., et al.: Squalestatin 1, a potent inhibitor of squalene synthase, which lowers serum cholesterol in vivo. J. Biol. Chem. 267(17), 11705–11708 (1992)

    PubMed  CAS  Google Scholar 

  49. Bergstrom, J.D., et al.: Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc. Natl. Acad. Sci. U. S. A. 90(1), 80–84 (1993)

    Article  PubMed  CAS  Google Scholar 

  50. Chugh, A., Ray, A., Gupta, J.B.: Squalene epoxidase as hypocholesterolemic drug target revisited. Prog. Lipid Res. 42(1), 37–50 (2003)

    Article  PubMed  CAS  Google Scholar 

  51. Matzno, S., et al.: Inhibition of cholesterol biosynthesis by squalene epoxidase inhibitor avoids apoptotic cell death in L6 myoblasts. J. Lipid Res. 38(8), 1639–1648 (1997)

    PubMed  CAS  Google Scholar 

  52. Horie, M., et al.: An inhibitor of squalene epoxidase, NB-598, suppresses the secretion of cholesterol and triacylglycerol and simultaneously reduces apolipoprotein B in HepG2 cells. Biochim. Biophys. Acta 1168(1), 45–51 (1993)

    Article  PubMed  CAS  Google Scholar 

  53. Abe, I., et al.: Green tea polyphenols: novel and potent inhibitors of squalene epoxidase. Biochem. Biophys. Res. Commun. 268(3), 767–771 (2000)

    Article  PubMed  CAS  Google Scholar 

  54. Wu, A.H., et al.: Effect of 2-month controlled green tea intervention on lipoprotein cholesterol, glucose, and hormonal levels in healthy postmenopausal women. Cancer. Prev. Res. (Phila), (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Welti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welti, M. Regulation of dolichol-linked glycosylation. Glycoconj J 30, 51–56 (2013). https://doi.org/10.1007/s10719-012-9417-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9417-y

Keywords

Navigation