Skip to main content
Log in

Brain lipid composition in grey-lethal mutant mouse characterized by severe malignant osteopetrosis

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The grey-lethal mouse (gl/gl) mutant most closely resembles the severe human malignant autosomal recessive OSTM1-dependent form of osteopetrosis that it has been described to be associated with neurological abnormalities. For this reason, we have analyzed the brain lipid composition (gangliosides, neutral glycosphingolipids, phospholipids and cholesterol), from gl/gl mice at different ages of development and compared with wild type mice. Both cholesterol and glycerophospholipid content and pattern in the gl/gl and control mice were very similar. In contrast, significant differences were observed in the content of several sphingolipids. Higher amount of the monosialogangliosides GM2 and GM3, and lower content of sphingomyelin, sulfatide and galactosylceramide were observed in the gl/gl brain with respect to controls. The low content of sphingomyelin, sulfatide and galactosylceramide is consistent with the immunohistochemical results showing that in the grey-lethal brain significant depletion and disorganization of the myelinated fibres is present, thus supporting the hypothesis that loss of function of the OSTM1 causes neuronal impairment and myelin deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

gl/gl :

grey-lethal

ARO:

Autosomal Recessive Osteopetrosis

OSTM1:

osteopetrosis associated transmembrane protein 1

HSC:

haematopoietic stem cells

HPTLC:

high-performance thin layer chromatography

References

  1. Tolar, J., Teitelbaum, S.L., Orchard, P.J.: Osteopetrosis. N. Engl. J. Med. 351, 2839–2849 (2004). doi:10.1056/NEJMra040952

    Article  PubMed  Google Scholar 

  2. Sobacchi, C., Frattini, A., Guerrini, M.M., Abinun, M., Pangrazio, A., Susani, L., et al.: Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat. Genet. 39, 960–962 (2007). doi:10.1038/ng2076

    Article  PubMed  CAS  Google Scholar 

  3. Frattini, A., Orchard, P.J., Sobacchi, C., Giliani, S., Abinun, M., Mattsson, J.P., et al.: Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat. Genet. 25, 343–346 (2000). doi:10.1038/77131

    Article  PubMed  CAS  Google Scholar 

  4. Kornak, U., Schulz, A., Friedrich, W., Uhlhaas, S., Kremens, B., Voit, T., et al.: Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum. Mol. Genet. 9, 2059–2063 (2000). doi:10.1093/hmg/9.13.2059

    Article  PubMed  CAS  Google Scholar 

  5. Scimeca, J.C., Quincey, D., Parrinello, H., Romatet, D., Grosgeorge, J., Gaudray, P., et al.: Novel mutations in the TCIRG1 gene encoding the a3 subunit of the vacuolar proton pump in patients affected by infantile malignant osteopetrosis. Hum. Mutat. 21, 151–157 (2003). doi:10.1002/humu.10165

    Article  PubMed  CAS  Google Scholar 

  6. Frattini, A., Pangrazio, A., Susani, L., Sobacchi, C., Mirolo, M., Abinun, M., et al.: Chloride schannel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J. Bone Miner. Res. 18, 1740–1747 (2003). doi:10.1359/jbmr.2003.18.10.1740

    Article  PubMed  CAS  Google Scholar 

  7. Kornak, U., Kasper, D., Bosl, M.R., Kaiser, E., Schweizer, M., Schulz, A., et al.: Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104, 205–215 (2001). doi:10.1016/S0092-8674(01)00206-9

    Article  PubMed  CAS  Google Scholar 

  8. Cleiren, E., Benichou, O., Van Hul, E., Gram, J., Bollerslev, J., Singer, F.R., et al.: Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum. Mol. Genet. 10, 2861–2867 (2001). doi:10.1093/hmg/10.25.2861

    Article  PubMed  CAS  Google Scholar 

  9. Lange, P.F., Wartosch, L., Jentsch, T.J., Fuhrmann, J.C.: ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 440, 220–223 (2006). doi:10.1038/nature04535

    Article  PubMed  CAS  Google Scholar 

  10. Jentsch, T.J.: Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. J. Physiol. 578, 633–640 (2007). doi:10.1113/jphysiol.2006.124719

    Article  PubMed  CAS  Google Scholar 

  11. Chalhoub, N., Benachenhou, N., Rajapurohitam, V., Pata, M., Ferron, M., Frattini, A., et al.: Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat. Med. 9, 399–406 (2003). doi:10.1038/nm842

    Article  PubMed  CAS  Google Scholar 

  12. Quarello, P., Forni, M., Barberis, L., Defilippi, C., Campagnoli, M.F., Silvestro, L., et al.: Severe malignant osteopetrosis caused by a GL gene mutation. J. Bone Miner. Res. 19, 1194–1199 (2004). doi:10.1359/JBMR.040407

    Article  PubMed  Google Scholar 

  13. Ramirez, A., Faupel, J., Goebel, I., Stiller, A., Beyer, S., Stockle, C., et al.: Identification of a novel mutation in the coding region of the grey-lethal gene OSTM1 in human malignant infantile osteopetrosis. Hum. Mutat. 23, 471–476 (2004). doi:10.1002/humu.20028

    Article  PubMed  CAS  Google Scholar 

  14. Pangrazio, A., Poliani, P.L., Megarbane, A., Lefranc, G., Lanino, E., Di Rocco, M., et al.: Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. J. Bone Miner. Res. 21, 1098–1105 (2006). doi:10.1359/jbmr.060403

    Article  PubMed  CAS  Google Scholar 

  15. Gerritsen, E.J., Vossen, J.M., Fasth, A., Friedrich, W., Morgan, G., Padmos, A., et al.: Bone marrow transplantation for autosomal recessive osteopetrosis. A report from the Working Party on Inborn Errors of the European Bone Marrow Transplantation Group. J. Pediatr. 125, 896–902 (1994). doi:10.1016/S0022-3476(05)82004-9

    Article  PubMed  CAS  Google Scholar 

  16. Driessen, G.J., Gerritsen, E.J., Fischer, A., Fasth, A., Hop, W.C., Veys, P., et al.: Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone Marrow Transplant. 32, 657–663 (2003). doi:10.1038/sj.bmt.1704194

    Article  PubMed  CAS  Google Scholar 

  17. Feigin, M.E., Malbon, C.C.: OSTM1 regulates beta-catenin/Lef1 interaction and is required for Wnt/beta-catenin signaling. Cell. Signal. 20, 949–957 (2008). doi:10.1016/j.cellsig.2008.01.009

    Article  PubMed  CAS  Google Scholar 

  18. Ghidoni, R., Sonnino, S., Masserini, M., Orlando, P., Tettamanti, G.: Specific tritium labeling of gangliosides at the 3-position of sphingosines. J. Lipid Res. 22, 1286–1295 (1981)

    PubMed  CAS  Google Scholar 

  19. Negroni, E., Chigorno, V., Tettamanti, G., Sonnino, S.: Evaluation of the efficiency of an assay procedure for gangliosides in human serum. Glycoconj. J. 13, 347–352 (1996). doi:10.1007/BF00731466

    Article  PubMed  CAS  Google Scholar 

  20. Prinetti, A., Chigorno, V., Prioni, S., Loberto, N., Marano, N., Tettamanti, G., et al.: Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J. Biol. Chem. 276, 21136–21145 (2001). doi:10.1074/jbc.M010666200

    Article  PubMed  CAS  Google Scholar 

  21. Riboni, L., Bassi, R., Sonnino, S., Tettamanti, G.: Formation of free sphingosine and ceramide from exogenous ganglioside GM1 by cerebellar granule cells in culture. FEBS Lett. 300, 188–192 (1992). doi:10.1016/0014-5793(92)80193-K

    Article  PubMed  CAS  Google Scholar 

  22. Riboni, L., Prinetti, A., Pitto, M., Tettamanti, G.: Patterns of endogenous gangliosides and metabolic processing of exogenous gangliosides in cerebellar granule cells during differentiation in culture. Neurochem. Res. 15, 1175–1183 (1990). doi:10.1007/BF01208577

    Article  PubMed  CAS  Google Scholar 

  23. Svennerholm, L.: Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim. Biophys. Acta 24, 604–611 (1957). doi:10.1016/0006-3002(57)90254-8

    Article  PubMed  CAS  Google Scholar 

  24. Bartlett, G.R.: Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466–468 (1959)

    PubMed  CAS  Google Scholar 

  25. Kean, E.L.: Separation of gluco- and galactocerebrosides by means of borate thin-layer chromatography. J. Lipid Res. 7, 449–452 (1966)

    PubMed  CAS  Google Scholar 

  26. Prinetti, A., Chigorno, V., Tettamanti, G., Sonnino, S.: Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J. Biol. Chem. 275, 11658–11665 (2000). doi:10.1074/jbc.275.16.11658

    Article  PubMed  CAS  Google Scholar 

  27. Vaskovsky, V.E., Kostetsky, E.Y.: Modified spray for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res. 9, 396 (1968)

    PubMed  CAS  Google Scholar 

  28. Partridge, S.M.: Filter-paper partition chromatography of sugars: 1. General description and application to the qualitative analysis of sugars in apple juice, egg white and foetal blood of sheep. with a note by R. G. Westall. Biochem. J. 42, 238–250 (1948)

    CAS  Google Scholar 

  29. Schwimmer, S., Bevenue, A.: Reagent for differentiation of 1,4- and 1,6-linked glucosaccharides. Science 123, 543–544 (1956). doi:10.1126/science.123.3196.543

    Article  PubMed  CAS  Google Scholar 

  30. Banny, T.M., Clark, G.: The new domestic cresyl echt violet. Stain Technol. 25, 195–196 (1950)

    PubMed  CAS  Google Scholar 

  31. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    PubMed  CAS  Google Scholar 

  32. Gruneberg, H.: Grey-lethal, a new mutation in the house mouse. J. Hered. 27, 105–109 (1936)

    Google Scholar 

  33. Walker, D.G.: Spleen cells transmit osteopetrosis in mice. Science 190, 785–787 (1975). doi:10.1126/science.1198094

    Article  PubMed  CAS  Google Scholar 

  34. Matthieu, J.M., Widmer, S., Herschkowitz, N.: Biochemical changes in mouse brain composition during myelination. Brain Res. 55, 391–402 (1973). doi:10.1016/0006-8993(73)90304-1

    Article  PubMed  CAS  Google Scholar 

  35. Chen, C.S., Patterson, M.C., Wheatley, C.L., O’Brien, J.F., Pagano, R.E.: Broad screening test for sphingolipid-storage diseases. Lancet 354, 901–905 (1999). doi:10.1016/S0140-6736(98)10034-X

    Article  PubMed  CAS  Google Scholar 

  36. Chigorno, V., Tettamanti, G., Sonnino, S.: Metabolic processing of gangliosides by normal and Salla human fibroblasts in culture. A study performed by administering radioactive GM3 ganglioside. J. Biol. Chem. 271, 21738–21744 (1996). doi:10.1074/jbc.271.36.21738

    Article  PubMed  CAS  Google Scholar 

  37. Utsumi, K., Tsuji, A., Kase, R., Tanaka, A., Tanaka, T., Uyama, E., et al.: Western blotting analysis of the beta-hexosaminidase alpha- and beta-subunits in cultured fibroblasts from cases of various forms of GM2 gangliosidosis. Acta Neurol. Scand. 105, 427–430 (2002). doi:10.1034/j.1600-0404.2002.01097.x

    Article  PubMed  CAS  Google Scholar 

  38. Gieselmann, V.: Lysosomal storage diseases. Biochim. Biophys. Acta 1270, 103–136 (1995)

    PubMed  Google Scholar 

  39. Huwiler, A., Kolter, T., Pfeilschifter, J., Sandhoff, K.: Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim. Biophys. Acta 1485, 63–99 (2000)

    PubMed  CAS  Google Scholar 

  40. Igisu, H., Suzuki, K.: Progressive accumulation of toxic metabolite in a genetic leukodystrophy. Science 224, 753–755 (1984). doi:10.1126/science.6719111

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki, K.: Twenty five years of the “psychosine hypothesis”: a personal perspective of its history and present status. Neurochem. Res. 23, 251–259 (1998). doi:10.1023/A:1022436928925

    Article  PubMed  CAS  Google Scholar 

  42. Sonnino, S., Mauri, L., Chigorno, V., Prinetti, A.: Gangliosides as components of lipid membrane domains. Glycobiology 17, 1R–13R (2007). doi:10.1093/glycob/cwl052

    Article  PubMed  CAS  Google Scholar 

  43. Reddy, A., Caler, E.V., Andrews, N.W.: Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106, 157–169 (2001). doi:10.1016/S0092-8674(01)00421-4

    Article  PubMed  CAS  Google Scholar 

  44. Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C., Prochiantz, A.: Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro. J. Cell Biol. 128, 919–927 (1995). doi:10.1083/jcb.128.5.919

    Article  PubMed  CAS  Google Scholar 

  45. Ikezu, T., Trapp, B.D., Song, K.S., Schlegel, A., Lisanti, M.P., Okamoto, T.: Caveolae, plasma membrane microdomains for alpha-secretase-mediated processing of the amyloid precursor protein. J. Biol. Chem. 273, 10485–10495 (1998). doi:10.1074/jbc.273.17.10485

    Article  PubMed  CAS  Google Scholar 

  46. Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C.G., Simons, K.: Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. U. S. A. 95, 6460–6464 (1998). doi:10.1073/pnas.95.11.6460

    Article  PubMed  CAS  Google Scholar 

  47. Choo-Smith, L.P., Surewicz, W.K.: The interaction between Alzheimer amyloid beta(1–40) peptide and ganglioside GM1-containing membranes. FEBS Lett. 402, 95–98 (1997). doi:10.1016/S0014-5793(96)01504-9

    Article  PubMed  CAS  Google Scholar 

  48. Fortin, D.L., Troyer, M.D., Nakamura, K., Kubo, S., Anthony, M.D., Edwards, R.H.: Lipid rafts mediate the synaptic localization of alpha-synuclein. J. Neurosci. 24, 6715–6723 (2004). doi:10.1523/JNEUROSCI.1594-04.2004

    Article  PubMed  CAS  Google Scholar 

  49. Benarroch, E.E.: Lipid rafts, protein scaffolds, and neurologic disease. Neurology 69, 1635–1639 (2007). doi:10.1212/01.wnl.0000279590.22544.c3

    Article  PubMed  Google Scholar 

  50. Vey, M., Pilkuhn, S., Wille, H., Nixon, R., DeArmond, S.J., Smart, E.J., et al.: Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc. Natl. Acad. Sci. U. S. A. 93, 14945–14949 (1996). doi:10.1073/pnas.93.25.14945

    Article  PubMed  CAS  Google Scholar 

  51. Rodriguez-Lafrasse, C., Vanier, M.T.: Sphingosylphosphorylcholine in Niemann-Pick disease brain: accumulation in type A but not in type B. Neurochem. Res. 24, 199–205 (1999). doi:10.1023/A:1022501702403

    Article  PubMed  CAS  Google Scholar 

  52. Yu, R.K., Bieberich, E., Xia, T., Zeng, G.: Regulation of ganglioside biosynthesis in the nervous system. J. Lipid Res. 45, 783–793 (2004). doi:10.1194/jlr.R300020-JLR200

    Article  PubMed  CAS  Google Scholar 

  53. Maxzud, M.K., Daniotti, J.L., Maccioni, H.J.: Functional coupling of glycosyl transfer steps for synthesis of gangliosides in Golgi membranes from neural retina cells. J. Biol. Chem. 270, 20207–20214 (1995). doi:10.1074/jbc.270.34.20207

    Article  PubMed  CAS  Google Scholar 

  54. Maccioni, H.J.: Glycosylation of glycolipids in the Golgi complex. J. Neurochem. 103(Suppl 1), 81–90 (2007). doi:10.1111/j.1471-4159.2007.04717.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by University of Milan (FIRST to S.S.), CARIPLO Foundation (to S.S.) and by Mitzutani Foundation for Glycoscience (to A.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Prinetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prinetti, A., Rocchetta, F., Costantino, E. et al. Brain lipid composition in grey-lethal mutant mouse characterized by severe malignant osteopetrosis. Glycoconj J 26, 623–633 (2009). https://doi.org/10.1007/s10719-008-9179-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9179-8

Keywords

Navigation