Skip to main content
Log in

Core saccharide dependence of sialyl Lewis X biosynthesis

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The sialyl-Lewis X (SLex) determinant is important in leukocyte extravasation, metastasis and bacterial adhesion. The role of the protein, N-glycan and O-glycan core structures for the biosynthesis of SLex in vivo by fucosyltransferases (FucTs) is not known. Immunoglobulin G (IgG) Fc fusion proteins of α1-acid glycoprotein (AGP), P-selectin glycoprotein ligand-1 (PSGL-1) or CD43 were used to probe the specificity of FucT-III-VII expressed alone in 293T and COS cells or together with O-glycan core enzymes in Chinese hamster ovary (CHO)-K1 cells. Western blotting with the monoclonal antibodies CSLEX and KM93 showed that FucT-III and V-VII produced SLex on core 2 in CHO cells. Only FucT-V, -VI and, with low activity, -VII worked on core 3 on CD43/IgG, but no SLex was detected with CSLEX on PSGL-1/IgG with core 3. KM93 stained SLex on core 2, but was not reactive with SLex on core 3. FucT-III, V-VII made SLex on N-glycans of AGP/IgG in CHO, but not in COS and 293T cells, even though the same FucTs could make SLex on CD43/IgG and PSGL-1/IgG in these cells. Our results define the specificities of FucT-III-VII in SLex biosynthesis on O-glycans with different core structures and the fine specificity of the widely used anti-SLex monoclonal antibody, KM93.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mahdavi, J., Sonden, B., Hurtig, M., Olfat, F.O., Forsberg, L., Roche, N., et al.: Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297, 573–578 (2002). doi:10.1126/science.1069076

    Article  PubMed  CAS  Google Scholar 

  2. Scharfman, A., Arora, S.K., Delmotte, P., Van Brussel, E., Mazurier, J., Ramphal, R., et al.: Recognition of Lewis x derivatives present on mucins by flagellar components of Pseudomonas aeruginosa. Infect. Immun. 69, 5243–5248 (2001). doi:10.1128/IAI.69.9.5243-5248.2001

    Article  PubMed  CAS  Google Scholar 

  3. Foxall, C., Watson, S., Dowbenko, D., Fennie, C., Lasky, L., Kiso, M., et al.: The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. J. Cell Biol. 117, 895–902 (1992). doi:10.1083/jcb.117.4.895

    Article  PubMed  CAS  Google Scholar 

  4. Varki, A.: Selectin ligands. Proc. Natl. Acad. Sci. U. S. A. 91, 7390–7397 (1994). doi:10.1073/pnas.91.16.7390

    Article  PubMed  CAS  Google Scholar 

  5. Vestweber, D., Blanks, J.E.: Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev. 79, 181–213 (1999)

    PubMed  CAS  Google Scholar 

  6. Nemoto, Y., Izumi, Y., Tezuka, K., Tamatani, T., Irimura, T.: Comparison of 16 human colon carcinoma cell lines for their expression of sialyl LeX antigens and their E-selectin-dependent adhesion. Clin. Exp. Metastasis 16, 569–576 (1998). doi:10.1023/A:1006593716815

    Article  PubMed  CAS  Google Scholar 

  7. Sell, S.: Cancer-associated carbohydrates identified by monoclonal antibodies. Hum. Pathol. 21, 1003–1019 (1990). doi:10.1016/0046-8177(90)90250-9

    Article  PubMed  CAS  Google Scholar 

  8. St Hill, C.A., Bullard, K.M., Walcheck, B.: Expression of the high-affinity selectin glycan ligand C2-O-sLeX by colon carcinoma cells. Cancer Lett. 217, 105–113 (2005). doi:10.1016/j.canlet.2004.06.038

    Article  PubMed  CAS  Google Scholar 

  9. Kumamoto, K., Mitsuoka, C., Izawa, M., Kimura, N., Otsubo, N., Ishida, H., Kiso, M., Yamada, T., Hirohashi, S., Kannagi, R., et al.: Specific detection of sialyl Lewis X determinant carried on the mucin GlcNAcbeta1–>6GalNAcalpha core structure as a tumor-associated antigen. Biochem. Biophys. Res. Commun. 247, 514–517 (1998). doi:10.1006/bbrc.1998.8824

    Article  PubMed  CAS  Google Scholar 

  10. Yamaguchi, A., Ding, K., Maehara, M., Goi, T., Nakagawara, G.: Expression of nm23-H1 gene and Sialyl Lewis X antigen in breast cancer. Oncology 55, 357–362 (1998). doi:10.1159/000011878

    Article  PubMed  CAS  Google Scholar 

  11. Dohi, T., Nemoto, T., Ohta, S., Shitara, K., Hanai, N., Nudelman, E., et al.: Different binding properties of three monoclonal antibodies to sialyl Le(x) glycolipids in a gastric cancer cell line and normal stomach tissue. Anticancer Res. 13, 1277–1282 (1993)

    Article  PubMed  CAS  Google Scholar 

  12. Hanley, W.D., Burdick, M.M., Konstantopoulos, K., Sackstein, R.: CD44 on LS174T colon carcinoma cells possesses E-selectin ligand activity. Cancer Res. 65, 5812–5817 (2005). doi:10.1158/0008-5472.CAN-04-4557

    Article  PubMed  CAS  Google Scholar 

  13. Hicks, A.E.R., Nolan, S.L., Ridger, V.C., Hellewell, P.G., Norman, K.E.: Recombinant P-selectin glycoprotein ligand-1 directly inhibits leukocyte rolling by all 3 selectins in vivo: complete inhibition of rolling is not required for anti-inflammatory effect. Blood 101, 3249–3256 (2003). doi:10.1182/blood-2002-07-2329

    Article  PubMed  CAS  Google Scholar 

  14. de Vries, T., Knegtel, R.M., Holmes, E.H., Macher, B.A.: Fucosyltransferases: structure/function studies. Glycobiology 11, 119R–128R (2001). doi:10.1093/glycob/11.10.119R

    Article  PubMed  Google Scholar 

  15. Grabenhorst, E., Nimtz, M., Costa, J., Conradt, H.S.: In vivo specificity of human alpha1,3/4-fucosyltransferases III-VII in the biosynthesis of LewisX and Sialyl LewisX motifs on complex-type N-glycans. Coexpression studies from bhk-21 cells together with human beta-trace protein. J. Biol. Chem. 273, 30985–30994 (1998). doi:10.1074/jbc.273.47.30985

    Article  PubMed  CAS  Google Scholar 

  16. Stroud, M.R., Holmes, E.H.: Fucosylation of complex glycosphingolipids by recombinant fucosyltransferase-VII. Biochem. Biophys. Res. Commun. 238, 165–168 (1997). doi:10.1006/bbrc.1997.7254

    Article  PubMed  CAS  Google Scholar 

  17. Kimura, H., Shinya, N., Nishihara, S., Kaneko, M., Irimura, T., Narimatsu, H.: Distinct substrate specificities of five human alpha-1,3-fucosyltransferases for in vivo synthesis of the sialyl Lewis x and Lewis x epitopes. Biochem. Biophys. Res. Commun. 237, 131–137 (1997). doi:10.1006/bbrc.1997.7100

    Article  PubMed  CAS  Google Scholar 

  18. Huang, M.C., Laskowska, A., Vestweber, D., Wild, M.K.: The alpha (1,3)-fucosyltransferase Fuc-TIV, but not Fuc-TVII, generates sialyl Lewis X-like epitopes preferentially on glycolipids. J. Biol. Chem. 277, 47786–47795 (2002). doi:10.1074/jbc.M208283200

    Article  PubMed  CAS  Google Scholar 

  19. Niemela, R., Natunen, J., Majuri, M.L., Maaheimo, H., Helin, J., Lowe, J.B., Renkonen, O., Renkonen, R., et al.: Complementary acceptor and site specificities of Fuc-TIV and Fuc-TVII allow effective biosynthesis of sialyl-TriLex and related polylactosamines present on glycoprotein counterreceptors of selectins. J. Biol. Chem. 273, 4021–4026 (1998). doi:10.1074/jbc.273.7.4021

    Article  PubMed  CAS  Google Scholar 

  20. Mitoma, J., Petryniak, B., Hiraoka, N., Yeh, J.C., Lowe, J.B., Fukuda, M.: Extended core 1 and core 2 branched O-glycans differentially modulate sialyl Lewis X-type L-selectin ligand activity. J. Biol. Chem. 278, 9953–9961 (2003). doi:10.1074/jbc.M212756200

    Article  PubMed  CAS  Google Scholar 

  21. Martinez, M., Joffraud, M., Giraud, S., Baisse, B., Bernimoulin, M.P., Schapira, M., et al.: Regulation of PSGL-1 interactions with L-selectin, P-selectin, and E-selectin: role of human fucosyltransferase-IV and -VII. J. Biol. Chem. 280, 5378–5390 (2005). doi:10.1074/jbc.M410899200

    Article  PubMed  CAS  Google Scholar 

  22. Brockhausen, I.: Pathways of O-glycan biosynthesis in cancer cells. Biochim. Biophys. Acta 1473, 67–95 (1999)

    PubMed  CAS  Google Scholar 

  23. Hanisch, F.G.: O-glycosylation of the mucin type. Biol. Chem. 382, 143–149 (2001). doi:10.1515/BC.2001.022

    Article  PubMed  CAS  Google Scholar 

  24. Ellies, L.G., Tsuboi, S., Petryniak, B., Lowe, J.B., Fukuda, M., Marth, J.D.: Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity 9, 881–890 (1998). doi:10.1016/S1074-7613(00)80653-6

    Article  PubMed  CAS  Google Scholar 

  25. Walcheck, B., Leppanen, A., Cummings, R.D., Knibbs, R.N., Stoolman, L.M., Alexander, S.R., et al.: The monoclonal antibody CHO-131 binds to a core 2 O-glycan terminated with sialyl-Lewis x, which is a functional glycan ligand for P-selectin. Blood 99, 4063–4069 (2002). doi:10.1182/blood-2001-12-0265

    Article  PubMed  CAS  Google Scholar 

  26. Fukuda, M., Tsuboi, S.: Mucin-type O-glycans and leukosialin. Biochim. Biophys. Acta 1455, 205–217 (1999)

    PubMed  CAS  Google Scholar 

  27. Merzaban, J.S., Zuccolo, J., Corbel, S.Y., Williams, M.J., Ziltener, H.J.: An alternate core 2 {beta}1,6-N-acetylglucosaminyltransferase selectively contributes to P-selectin ligand formation in activated CD8 T cells. J. Immunol. 174, 4051–4059 (2005)

    PubMed  CAS  Google Scholar 

  28. Iwai, T., Kudo, T., Kawamoto, R., Kubota, T., Togayachi, A., Hiruma, T., et al.: Core 3 synthase is down-regulated in colon carcinoma and profoundly suppresses the metastatic potential of carcinoma cells. Proc. Natl. Acad. Sci. U. S. A. 102, 4572–4577 (2005). doi:10.1073/pnas.0407983102

    Article  PubMed  CAS  Google Scholar 

  29. Iwai, T., Inaba, N., Naundorf, A., Zhang, Y., Gotoh, M., Iwasaki, H., et al.: Molecular cloning and characterization of a novel UDP-GlcNAc:GalNAc-peptide beta1,3-N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J. Biol. Chem. 277, 12802–12809 (2002). doi:10.1074/jbc.M112457200

    Article  PubMed  CAS  Google Scholar 

  30. Liu, J., Gustafsson, A., Breimer, M.E., Kussak, A., Holgersson, J.: Anti-pig antibody adsorption efficacy of {alpha}-Gal carrying recombinant P-selectin glycoprotein ligand-1/immunoglobulin chimeras increases with core 2 {beta}1, 6-N-acetylglucosaminyltransferase expression. Glycobiology 15, 571–583 (2005). doi:10.1093/glycob/cwi037

    Article  PubMed  CAS  Google Scholar 

  31. Bierhuizen, M.F., Fukuda, M.: Expression cloning of a cDNA encoding UDP-GlcNAc:Gal beta 1–3-GalNAc-R (GlcNAc to GalNAc) beta 1–6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc. Natl. Acad. Sci. U. S. A. 89, 9326–9330 (1992). doi:10.1073/pnas.89.19.9326

    Article  PubMed  CAS  Google Scholar 

  32. Holgersson, J., Löfling, J.: Glycosyltransferases involved in type 1 chain and Lewis antigen biosynthesis exhibit glycan and core chain specificity. Glycobiology 16, 584–593 (2006). doi:10.1093/glycob/cwj090

    Article  PubMed  CAS  Google Scholar 

  33. Liu, J., Qian, Y., Holgersson, J.: Removal of xenoreactive human anti-pig antibodies by absorption on recombinant mucin-containing glycoproteins carrying the Gal alpha1,3Gal epitope. Transplantation 63, 1673–1682 (1997). doi:10.1097/00007890-199706150-00023

    Article  PubMed  CAS  Google Scholar 

  34. Löfling, J.C., Hauzenberger, E., Holgersson, J.: Absorption of anti-blood group A antibodies on P-selectin glycoprotein ligand-1/immunoglobulin chimeras carrying blood group A determinants: core saccharide chain specificity of the Se and H gene encoded alpha1,2 fucosyltransferases in different host cells. Glycobiology 12, 173–182 (2002). doi:10.1093/glycob/12.3.173

    Article  PubMed  Google Scholar 

  35. Backstrom, M., Link, T., Olson, F.J., Karlsson, H., Graham, R., Picco, G., et al.: Recombinant MUC1 mucin with a breast cancer-like O-glycosylation produced in large amounts in Chinese-hamster ovary cells. Biochem. J. 376, 677–686 (2003). doi:10.1042/BJ20031130

    Article  PubMed  Google Scholar 

  36. Engelmann, K., Kinlough, C.L., Muller, S., Razawi, H., Baldus, S.E., Hughey, R.P., et al.: Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles. Glycobiology 15, 1111–1124 (2005). doi:10.1093/glycob/cwi099

    Article  PubMed  CAS  Google Scholar 

  37. Yano, H., Yamamoto-Hino, M., Abe, M., Kuwahara, R., Haraguchi, S., Kusaka, I., et al.: Distinct functional units of the Golgi complex in Drosophila cells. Proc. Natl. Acad. Sci. U. S. A. 102, 13467–13472 (2005). doi:10.1073/pnas.0506681102

    Article  PubMed  CAS  Google Scholar 

  38. Burdick, M.D., Harris, A., Reid, C.J., Iwamura, T., Hollingsworth, M.A.: Oligosaccharides expressed on MUC1 produced by pancreatic and colon tumor cell lines. J. Biol. Chem. 272, 24198–24202 (1997). doi:10.1074/jbc.272.39.24198

    Article  PubMed  CAS  Google Scholar 

  39. Kohlgraf, K.G., Gawron, A.J., Higashi, M., Meza, J.L., Burdick, M.D., Kitajima, S., et al.: Contribution of the MUC1 tandem repeat and cytoplasmic tail to invasive and metastatic properties of a pancreatic cancer cell line. Cancer Res. 63, 5011–5020 (2003)

    PubMed  CAS  Google Scholar 

  40. Silverman, H.S., Sutton-Smith, M., McDermott, K., Heal, P., Leir, S.H., Morris, H.R., et al.: The contribution of tandem repeat number to the O-glycosylation of mucins. Glycobiology 13, 265–277 (2003). doi:10.1093/glycob/cwg028

    Article  PubMed  CAS  Google Scholar 

  41. Santos-Silva, F., Fonseca, A., Caffrey, T., Carvalho, F., Mesquita, P., Reis, C., et al.: Thomsen-Friedenreich antigen expression in gastric carcinomas is associated with MUC1 mucin VNTR polymorphism. Glycobiology 15, 511–517 (2005). doi:10.1093/glycob/cwi027

    Article  PubMed  CAS  Google Scholar 

  42. Silverman, H.S., Parry, S., Sutton-Smith, M., Burdick, M.D., McDermott, K., Reid, C.J., et al.: In vivo glycosylation of mucin tandem repeats. Glycobiology 11, 459–471 (2001). doi:10.1093/glycob/11.6.459

    Article  PubMed  CAS  Google Scholar 

  43. Sikut, R., Zhang, K., Baeckstrom, D., Hansson, G.C.: Distinct sub-populations of carcinoma-associated MUC1 mucins as detected by the monoclonal antibody 9H8 and antibodies against the sialyl-Lewis a and sialyl-Lewis x epitopes in the circulation of breast-cancer patients. Int. J. Cancer 66, 617–623 (1996). doi:10.1002/(SICI)1097-0215(19960529)66:5<617::AID-IJC6>3.0.CO;2-W

    Article  PubMed  CAS  Google Scholar 

  44. Nishimori, I., Perini, F., Mountjoy, K.P., Sanderson, S.D., Johnson, N., Cerny, R.L., et al.: N-acetylgalactosamine glycosylation of MUC1 tandem repeat peptides by pancreatic tumor cell extracts. Cancer Res. 54, 3738–3744 (1994)

    PubMed  CAS  Google Scholar 

  45. de Graffenried, C.L., Bertozzi, C.R.: Golgi localization of carbohydrate sulfotransferases Is a Determinant of L-selectin Ligand Biosynthesis. J. Biol. Chem. 278, 40282–40295 (2003). doi:10.1074/jbc.M304928200

    Article  PubMed  Google Scholar 

  46. de Graffenried, C.L., Bertozzi, C.R.: The roles of enzyme localisation and complex formation in glycan assembly within the Golgi apparatus. Curr. Opin. Cell Biol. 16, 356–363 (2004). doi:10.1016/j.ceb.2004.06.007

    Article  PubMed  Google Scholar 

  47. Fernandez-Rodriguez, J., Dwir, O., Alon, R., Hansson, G.C.: Tumor cell MUC1 and CD43 are glycosylated differently with sialyl-Lewis a and x epitopes and show variable interactions with E-selectin under physiological flow conditions. Glycoconj. J. 18, 925–930 (2001). doi:10.1023/A:1022208727512

    Article  PubMed  CAS  Google Scholar 

  48. Dimitroff, C.J., Descheny, L., Trujillo, N., Kim, R., Nguyen, V., Huang, W., et al.: Identification of leukocyte E-selectin ligands, P-selectin glycoprotein ligand-1 and E-selectin ligand-1, on human metastatic prostate tumor cells. Cancer Res. 65, 5750–5760 (2005). doi:10.1158/0008-5472.CAN-04-4653

    Article  PubMed  CAS  Google Scholar 

  49. Kawamura, Y.I., Kawashima, R., Fukunaga, R., Hirai, K., Toyama-Sorimachi, N., Tokuhara, M., Shimizu, T., Dohi, T.: Introduction of Sda carbohydrate antigen in gastrointestinal cancer cells eliminates selectin ligands and inhibits metastasis. Cancer Res. 65(14), 6220–6227 (2005), July 15

    Article  PubMed  CAS  Google Scholar 

  50. Friederichs, J., Zeller, Y., Hafezi-Moghadam, A., Grone, H.-J., Ley, K., Altevogt, P.: The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells. Cancer Res. 60, 6714–6722 (2000)

    PubMed  CAS  Google Scholar 

  51. Kanoh, A., Ota, M., Narimatsu, H., Irimura, T.: Expression levels of FUT6 gene transfected into human colon carcinoma cells switch two sialyl-Lewis X-related carbohydrate antigens with distinct properties in cell adhesion. Biochem. Biophys. Res. Commun. 303, 896–901 (2003). doi:10.1016/S0006-291X(03)00420-0

    Article  PubMed  CAS  Google Scholar 

  52. Kobzdej, M.M., Leppanen, A., Ramachandran, V., Cummings, R.D., McEver, R.P.: Discordant expression of selectin ligands and sialyl Lewis x-related epitopes on murine myeloid cells. Blood 100, 4485–4494 (2002). doi:10.1182/blood-2002-06-1799

    Article  PubMed  CAS  Google Scholar 

  53. Misugi, E., Kawamura, N., Imanishi, N., Tojo, S.J., Morooka, S.: Sialyl Lewis X moiety on rat polymorphonuclear leukocytes responsible for binding to rat E-selectin. Biochem. Biophys. Res. Commun. 215, 547–554 (1995). doi:10.1006/bbrc.1995.2499

    Article  PubMed  CAS  Google Scholar 

  54. Nakamura, M., Kudo, T., Narimatsu, H., Furukawa, Y., Kikuchi, J., Asakura, S., et al.: Single glycosyltransferase, core 2 beta1–>6-N-acetylglucosaminyltransferase, regulates cell surface sialyl-Lex expression level in human pre-B lymphocytic leukemia cell line KM3 treated with phorbolester. J. Biol. Chem. 273, 26779–26789 (1998). doi:10.1074/jbc.273.41.26779

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Brian Seed for kindly sharing expression plasmids.

This work was supported by the Swedish Research Council, grants K2005-06X-13031-07A and K2005-06BI-15356-01A. J.H. and J.L. were both supported by the program “Glycoconjugates in Biological Systems” financed by the Swedish Foundation for Strategic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Holgersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löfling, J., Holgersson, J. Core saccharide dependence of sialyl Lewis X biosynthesis. Glycoconj J 26, 33–40 (2009). https://doi.org/10.1007/s10719-008-9159-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9159-z

Keywords

Navigation