Skip to main content

Advertisement

Log in

Neutral N-glycan patterns of the gastropods Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The N-glycosylation potentials of Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica were analysed by investigation of the N-glycan structures of the skin and viscera glycoproteins by a combination of HPLC and mass-spectrometry methods. It is one of the first steps to enlarge the knowledge on the glycosylation abilities of gastropods, which may help to establish new cell culture systems, to uncover new means for pest control for some species, and to identify carbohydrate-epitopes which may be relevant for immune response. All snails analysed contained mainly oligomannosidic and small paucimannosidic structures, often terminated with 3-O-methylated mannoses. The truncated structures carried modifications by β1-2-linked xylose to the β-mannose residue, and/or an α-fucosylation, mainly α1,6-linked to the innermost N-acetylglucosaminyl residue of the core. Many of these structures were missing the terminal N-acetylglucosamine, which has been shown to be a prerequisite for processing to complex N-glycans in the Golgi. In some species (Planorbarius corneus and Achatina fulica) traces of large structures, terminated by 3-O-methylated galactoses and carrying xylose and/or fucose residues, were also detected. In Planorbarius viscera low amounts of terminal α1-2-fucosylation were determined. Combining these results, gastropods seem to be capable to produce all kinds of structures ranging from those typical in mammals through to structures similar to those found in plants, insects or nematodes. The detailed knowledge of this very complex glycosylation system of the gastropods will be a valuable tool to understand the principle rules of glycosylation in all organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Endoglycosidase H:

endo-β-N-acetylglucosaminidase H (E.C. 3.2.1.96)

peptide: N glycanase A:

peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase (E.C. 3.5.1.52)

HRP:

horseradish peroxidase

References

  1. Hokke, C.H., Deelder, A.M.: Schistosome glycoconjugates in host–parasite interplay. Glycoconj. J. 18, 573–587 (2001)

    Article  PubMed  CAS  Google Scholar 

  2. Vercruysse, J., Gabriel, S.: Immunity to schistosomiasis in animals: an update. Parasite Immunol. 27, 289–295 (2005)

    Article  PubMed  CAS  Google Scholar 

  3. Van Remoortere, A., Bank, C.M.C., Nyame, A.K., Cummings, R.D., Deelder, A.M., van Die, I.: Schistosoma mansoni-infected mice produce antibodies that cross-react with plant, insect, and mammalian glycoproteins and recognize the truncated biantennary N-glycan Man3GlcNAc2-R. Glycobiology 13, 217–225 (2003)

    Article  PubMed  Google Scholar 

  4. Hokke, C.H., Yazdanbakhsh, M.: Schistosome glycans and innate immunity. Parasite Immunol. 27, 257–264 (2005)

    Article  PubMed  CAS  Google Scholar 

  5. Miljanich, G.P.: Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 11, 3029–3040 (2004)

    PubMed  CAS  Google Scholar 

  6. Mansour, M.M., Ali, P.O., Farid, Z., Simpson, A.J., Woody, J.W.: Serological differntiation of acute and chronic schistosomiasis mansoni by antibody responses to keyhole limpet hemocyanin. Am. J. Trop. Med. Hyg. 41, 338–344 (1989)

    PubMed  CAS  Google Scholar 

  7. Alves-Brito, C.F., Simpson, A.J., Bahia-Oliverira, L.M., Rabello, A.L., Rocha, R.S., Lambertucci, J.R., Gazzinelli, G., Katz, N., Correa-Oliveira, R.: Analysis of anti-keyhole limpet haemocyanin antibody in Brazilians supports its use for the diagnosis of acute Schistosomiasis mansoni. Trans. R. Soc. Trop. Med. Hyg. 86, 53–56 (1992)

    Article  PubMed  CAS  Google Scholar 

  8. Dissous, C., Grzych, J.M., Capron, A.: Schistosoma mansoni shares a protective oligosaccharide epitope with freshwater and marine snails. Nature 323, 443–445 (1986)

    Article  PubMed  CAS  Google Scholar 

  9. Kantelhardt, S.R., Wuhrer, M., Dennis, R.D., Doenhoff, M.J., Bickle, Q., Geyer, R.: Fuc(α1→3)GalNAc-: the major antigenic motif of Schistosoma mansoni glycolipids implicated in infection sera and keyhole-limpet haemocyanin cross-reactivity. Biochem. J. 366, 217–223 (2002)

    PubMed  CAS  Google Scholar 

  10. Naus, C.W.A., van Remoortere, A., Ouma, J.H., Kimani, G., Dunne, D.W., Kamerling, J.P., Deelder, A.M., Hokke, C.H.: Specific antibody responses to three Schistosome-related carbohydrate structures in recently exposed immigrants and established residents in an area of Schistosoma mansoni endemicity. Infect. Immun. 71, 5676–5681 (2003)

    Article  PubMed  CAS  Google Scholar 

  11. Geyer, H., Wuhrer, M., Kurokawa, T., Geyer, R.: Characterization of keyhole limpet hemocyanin (KLH) glycans sharing a carboydrate epitope with Schistosoma mansoni glycoconjugates. Micron 35, 105–106 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. Geyer, H., Wuhrer, M., Resemann, A., Geyer, R.: Identification and characterization of keyhole limpet hemocyanin N-glycans mediating cross-reactivity with Schistosoma mansoni. J. Biol. Chem. 280, 40731–40748 (2005)

    Article  PubMed  CAS  Google Scholar 

  13. McFadden, D.W., Riggs, D.R., Jackson, B.J., Vona-Davis, L.: Keyhole limpet hemocyanin, a novel immune stimulant with promising anticancer activity in Barrett’s esophageal adenocarcinoma. Am. J. Surg. 186, 552–555 (2003)

    Article  PubMed  CAS  Google Scholar 

  14. Krug, L.M., Ragupathi, G., Hood, C., Kris, M.G., Miller, V.A., Allen, J.R., Keding, S.J., Danishefsky, S.J., Gomez, J., Tyson, L., Pizzo, B., Baez, V., Livingston, P.O.: Vaccination of patients with small-cell lung cancer with synthetic fucosyl GM-1 conjugated to keyhole limpet hemocyanin. Clin. Cancer Res. 10, 6094–6100 (2004)

    Article  PubMed  CAS  Google Scholar 

  15. Lommerse, J.P.M., Thomas-Oates, J.E., Gielens, C., Préaux, G., Kamerling, J.P., Vliegenthart, J.F.G.: Primary structure of 21 novel monoantennary and diantennary N-linked carbohydrate chains from α-D-hemocyanin of Helix pomatia. Eur. J. Biochem. 249, 195–222 (1997)

    Article  PubMed  CAS  Google Scholar 

  16. Van Kuik, J.A., Sijbesma, R.P., Kamerling, J.P., Vliegenthart, J.F.G., Wood, E.J.: Primary structure of a low-molecular-mass N-linked oligosaccharide from hemocyanin of Lymnaea stagnalis. 3-O-methyl-d-mannose as a constituent of the xylose-containing core structure in an animal glycoprotein. Eur. J. Biochem. 160, 621–625 (1986)

    Article  PubMed  Google Scholar 

  17. Van Kuik, J.A., Sijbesma, R.P., Kamerling, J.P., Vliegenthart, J.F.G., Wood, E.J.: Primary structure determination of seven novel N-linked carbohydrate chains derived from hemocyanin of Lymnaea stagnalis. 3-O-methyl-d-galactose and N-acetyl-d-galactosamine as constituents of xylose-containing N-linked oligosaccharides in an animal glycoprotein. Eur. J. Biochem. 169, 399–411 (1987)

    Article  PubMed  Google Scholar 

  18. Dolashka-Angelova, P., Beck, A., Dolashki, A., Beltramini, M., Stevanovic, S., Salvato, B., Voelter, W.: Characterization of the carbohydrate moieties of the functional unit RvH1-a of Rapana venosa haemocyanin using HPLC/electrospray ionization MS and glycosidase digestion. Biochem. J. 374, 185–192 (2003)

    Article  PubMed  CAS  Google Scholar 

  19. Kurokawa, T., Wuhrer, M., Lochnit, G., Geyer, H., Markl, J., Geyer, R.: Hemocyanin from the keyhole limpet Megathura crenulata (KLH) carries a novel type of N-glycans with Gal(β1-6)Man-motifs. Eur. J. Biochem. 269, 5459–5473 (2002)

    Article  PubMed  CAS  Google Scholar 

  20. Marxen, J.C., Nimtz, M., Becker, W., Mann, K.: The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. Biochim. Biophys. Acta 1650, 92–98 (2003)

    PubMed  CAS  Google Scholar 

  21. Gutternigg, M., Ahrer, K., Grabher-Meier, H., Bürgmayr, S., Staudacher, E.: Neutral N-glycans of the gastropod Arion lusitanicus. Eur. J. Biochem. 271, 1348–1356 (2004)

    Article  PubMed  CAS  Google Scholar 

  22. Bürgmayr, S., Grabher-Meier, H., Staudacher, E.: Sialic acids in gastropods. FEBS Lett. 508, 95–98 (2001)

    Article  PubMed  Google Scholar 

  23. Theron, A., Coustau, C.: Are Biomphalaria snails resistant to Schistosoma mansoni? J. Helminthol. 79, 187–191 (2005)

    Article  PubMed  CAS  Google Scholar 

  24. Humphries, J.E., Yoshino, T.P.: Schistosoma mansoni excretory–secretory products stimulate a p38 signalling pathway in Biomphalaria glabrata embryonic cells. Int. J. Parasitol. 36, 37–46 (2006)

    Article  PubMed  CAS  Google Scholar 

  25. Mohamed, A.H.: Characterization of surface lectins binding and SDS-PAGE protein patterns of Biomphalaria alexandrina haemocytes infected with Schistosoma mansoni. J. Egypt Soc. Parasitol. 35, 615–630 (2005)

    PubMed  Google Scholar 

  26. Lehr, T., Geyer, H., Maaß, K., Doenhoff, M.J., Geyer, R.: Structural characterization of N-glycans from the freshwater snail Biomphalaria glabrata cross-reacting with Schistosoma mansoni glycoconjugates. Glycobiology 17, 82–103 (2006)

    Article  PubMed  Google Scholar 

  27. Dolashka-Angelova, P., Beck, A., Dolashki, A., Stevanovic, S., Beltramini, M., Salvato, B., Hristova, R., Velkova, L., Voelter, W.: Carbohydate moieties of molluscan Rapana venosa hemocyanin. Micron 35, 101–104 (2004)

    Article  PubMed  CAS  Google Scholar 

  28. Sabatucci, A., Vachette, P., Beltramini, M., Salvato, B., Danese, E.: Comparative structural analysis of low-molecular mass fragments of Rapana venosa hemocyanin obtained using two different procedures. J. Struct. Biol. 149, 127–137 (2005)

    Article  PubMed  CAS  Google Scholar 

  29. Mulder, H., Dideberg, F., Schachter, H., Spronk, B.A., De Jong-Brink, M., Kamerling, J.P., Vliegenthart, J.F.G.: In the biosynthesis of N-glycans in connective tissue of the snail Lymnaea stagnalis of incorporation GlcNAc by β2GlcNAc-transferase I is an essential prerequisite for the action of βGlcNAc-transferase II and β2Xyl-transferase. Eur. J. Biochem. 232, 272–283 (1995)

    Article  PubMed  CAS  Google Scholar 

  30. Mulder, H., Spronk, B.A., Schachter, H., Neeleman, A.P., Van den Eijneden, D.H., De Jong-Brink, M., Kamerling, J.P., Vliegenthart, J.F.G.: Identification of a novel UDP-GalNAc:GlcNAcβ-R β1-4 N-acetylgalactosaminyltransferase from the albumen gland and connective tissue of the snail Lymnaea stagnalis. Eur. J. Biochem. 227, 175–185 (1995)

    Article  PubMed  CAS  Google Scholar 

  31. Mulder, H., Schachter, H., De Jong-Brink, M., Van der Ven, J.G.M., Kamerling, J.P., Vliegenthart, J.F.G.: Identification of a novel UDP-Gal:GalNAc β1-4GlcNAc-R β1-3-galactosyltransferase in the connective tissue of the snail Lymnaea stagnalis. Eur. J. Biochem. 201, 459–465 (1991)

    Article  PubMed  CAS  Google Scholar 

  32. Mulder, H., Schachter, H., Thomas, J.R., Halkes, K.M., Kamerling, J.P., Vliegenthart, J.F.G.: Identification of a GDP-Fuc:Gal β1-3GalNAc-R (Fuc to Gal) α1-2 fucosyltransferase and a GDP-Fuc:Gal β1-4GlcNAc (Fuc to GlcNAc) α1-3 fucosyltransferase in connective tissue of the snail Lymnaea stagnalis. Glycoconj. J. 13, 107–113 (1996)

    Article  PubMed  CAS  Google Scholar 

  33. Bakker, H., Agterberg, M., Van Tetering, A., Koeleman, C.A.M., Van den Eijnden, D.H., Van Die, I.: A Lymnaea stagnalis gene, with sequence similarity to that of mammalian β1-4-galactosyltransferases, encodes a novel UDP-GlcNAc:GlcNAc βR β1-4-N-acetylglucosaminyltransferase. J. Biol. Chem. 269, 30326–30333 (1994)

    PubMed  CAS  Google Scholar 

  34. Bakker, H., Schoenmakers, P.S., Koeleman, C.A.M., Joziasse, D.H., Van Die, I., Van den Eijnden, D.H.: The substrate specificity of the snail Lymnea stagnalis UDP-GlcNAc:GlcNAcβ-R β4-N-acetylglucosaminyltransferase reveals a novel variant pathway of complex-type oligosaccaride synthesis. Glycobiology 7, 539–548 (1997)

    Article  PubMed  CAS  Google Scholar 

  35. Bakker, H., Van Tetering, A., Agterberg, M., Smit, A.B., Van den Eijnden, D.H., Van Die, I.: Deletion of two exons from the Lymnaea stagnalis β1-4-N-acetylglucosaminyltransferase gene elevates the kinetic efficiency of the encoded enzyme for both UDP-sugar donor and acceptor substrates. J. Biol. Chem. 272, 18580–18585 (1997)

    Article  PubMed  CAS  Google Scholar 

  36. Van Die, I., Cummings, R.D., Van Tetering, A., Hokke, C.H., Koeleman, C.A.M., Van den Eijnden, D.H.: Identification of a novel UDP-Glc:GlcNAc β1-4-glucosyltransferae in Lymnea stagnalis that may be involved in the synthesis of complex type oligosaccharide chains. Glycobiology 10, 263–271 (2000)

    Article  PubMed  Google Scholar 

  37. Van Tetering, A., Schiphorst, W.E.C.M., Van den Eijnden, D.H., Van Die, I.: Characterization of a core α1-3-fucosyltransferase from the snail Lymnaea stagnalis that is involved in the synthesis of complex-type N-glycans. FEBS Lett. 461, 311–314 (1999)

    Article  PubMed  Google Scholar 

  38. Lüttge, H., Heidelberg, T., Stangier, K., Thiem, J., Bretting, H.: The specificity of an α(1-2)-l-galactosyltransferase from albumen glands of the snail Helix pomatia. Carbohydr. Res. 297, 281–288 (1997)

    Article  PubMed  Google Scholar 

  39. Staudacher, E., März, L.: Strict order of (Fuc to Asn-linked GlcNAc) fucosyltransferases forming core-difucosylated structures. Glycoconj. J. 15, 355–360 (1998)

    Article  PubMed  CAS  Google Scholar 

  40. Wilson, I.B.H., Zeleny, R., Kolarich, D., Staudacher, E., Stroop, C.J.M., Kamerling, J.P., Altmann, F.: Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core α1,3-linked fucose and xylose substitutions. Glycobiology 11, 261–274 (2001)

    Article  PubMed  CAS  Google Scholar 

  41. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  PubMed  CAS  Google Scholar 

  42. Anumula, K.R.: Quantitative determination of monosaccharides in glycoproteins by high-performance liquid chromatography with highly sensitive fluorescence detection. Anal. Biochem. 220, 275–283 (1994)

    Article  PubMed  CAS  Google Scholar 

  43. Kubelka, V., Altmann, F., Staudacher, E., Tretter, V., März, L., Hård, K., Kamerling, J.P., Vliegenthart, J.F.G.: Primary structures of the N-linked carbohydrate chains from honeybee venom phospholipase A2. Eur. J. Biochem. 213, 1193–1204 (1993)

    Article  PubMed  CAS  Google Scholar 

  44. Kolarich, D., Altmann, F.: N-Glycan analysis by matrix-assisted laser desorption/ionization mass spectrometry of electrophoretically separated nonmammalian proteins: application to peanut allergen Ara h 1 and olive pollen allergen Ole e 1. Anal. Biochem. 285, 64-75 (2000)

    Article  PubMed  CAS  Google Scholar 

  45. Geyer, H., Schmitt, S., Wuhrer, M., Geyer, R.: Structural analysis of glycoconjugates by on-target enzymatic digestion and MALDI-TOF-MS. Anal. Chem. 71, 476–482 (1999)

    Article  PubMed  CAS  Google Scholar 

  46. Peyer, C., Bonay, P., Staudacher, E.: Purification and characterization of a β-xylosidase from potatoes (Solanum tuberosum). Biochim. Biophys. Acta 1672, 27–35 (2004)

    PubMed  CAS  Google Scholar 

  47. Haslam, S.M., Coles, G.C., Morris, H.R., Dell, A.: Structural characterization of the N-glycans of Dictyocaulus viviparous: discovery of the Lewisx structure in a nematode. Glycobiology 10, 223–229 (2000)

    Article  PubMed  CAS  Google Scholar 

  48. Staudacher, E., Altmann, F., März, L., Hård, K., Kamerling, J.P., Vliegenthart, J.F.G.: α1-6(α1-3)-Difucosylation of the asparagine-bound N-acetylglucosamine in honeybee venom phospholipase A2. Glycoconj. J. 9, 82–85 (1992)

    Article  PubMed  CAS  Google Scholar 

  49. Kubelka, V., Altmann, F., Kornfeld, G., März, L.: Structures of the N-linked oligosaccharides of the membrane glycoproteins from three lepidopteran cell lines (Sf-21, IZD-Mb-0503, Bm-N). Arch. Biochem. Biophys. 308, 148–157 (1994)

    Article  PubMed  CAS  Google Scholar 

  50. Haas, W.: Parasitic worms: strategies of host finding, recognition and invasion. Zoology 106, 349–364 (2003)

    Article  PubMed  Google Scholar 

  51. Hall, R.L., Wood, E.J., Kamerling, J.P., Gerwig, G.J., Vliegenthart, J.F.G.: 3-O-methyl sugars as constituents of glycoproteins. Identification of 3-O-methylgalactose and 3-O-methylmannose in pulmonate gastropod haemocyanins. Biochem. J. 165, 173–176 (1977)

    PubMed  CAS  Google Scholar 

  52. Gielens, C., Idakieva, K., Van den Bergh, V., Siddiqui, N.I., Paravanova, K., Compernolle, F.: Mass spectral evidence for N-glycans with branching on fucose in a molluscan hemocyanin. Biochem. Biophys. Res. Commun. 331, 562–570 (2005)

    Article  PubMed  CAS  Google Scholar 

  53. Schachter, H.: Biosynthetic controls that detemine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem. Cell. Biol. 64, 163–181 (1986)

    PubMed  CAS  Google Scholar 

  54. Paschinger, K., Staudacher, E., Stemmer, U., Fabini, G., Wilson, I.B.H.: Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates. Glycobiology 15, 463–474 (2005)

    Article  PubMed  CAS  Google Scholar 

  55. Altmann, F., Schwihla, H., Staudacher, E., Glössl, J., März, L.: Insect cells contain an unusual, membrane-bound β-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J. Biol. Chem. 270, 17344–17349 (1995)

    Article  PubMed  CAS  Google Scholar 

  56. Zhang, W., Cao, P., Chen, S., Spence, A.M., Zhu, S., Staudacher, E., Schachter, H.: Synthesis of paucimannose N-glycans by Caenorhabditis elegans requires prior actions of UDP-N-acetyl-d-glucosamine:α-3-d-mannoside β1,2-N-acetylglucosaminyl transferase I, α3,6-mannosidase II and a specific membrane-bound β-N-acetylglucosaminidase. Biochem. J. 372, 53–64 (2003)

    Article  PubMed  CAS  Google Scholar 

  57. Léonard, R., Rendić, D., Rabouille, C., Wilson, I.B.H., Préat, T., Altmann, F.: The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. J. Biol. Chem. 281, 4867–4875 (2006)

    Article  PubMed  Google Scholar 

  58. Paschinger, K., Rendić, D., Lochnit, G., Jantsch, V., Wilson, I.B.H.: Molecular basis of anti-horseradish peroxidase staining in Caenorhabditis elegans. J. Biol. Chem. 279, 49588–49598 (2004)

    Article  PubMed  CAS  Google Scholar 

  59. Crispin, M., Harvey, D.J., Chang, V.T., Yu, C., Aricescu, A.R., Jones, E.Y., Davis, S.J., Dwek, R.A., Rudd, P.M.: Inhibition of hybrid- and complex-type glycosylation reveals the presence of the GlcNAc transferase I-independent fucosylation pathway. Glycobiology 16, 748–756 (2006)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was partly financed by the Austrian Fonds zur wissenschaftlichen Forschung Project number P13928-BIO. We want to thank Dr. Manfred Pintar (Department for Integrative Biology, Institute for Zoology, University of Natural Resources and Applied Life Sciences, Vienna,) for identification and classification of the snails and Dr. Iain Wilson for reading the manuscript. The technical help of Thomas Dalik, and Denise Kerner is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Staudacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutternigg, M., Bürgmayr, S., Pöltl, G. et al. Neutral N-glycan patterns of the gastropods Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica . Glycoconj J 24, 475–489 (2007). https://doi.org/10.1007/s10719-007-9040-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-007-9040-5

Keywords

Navigation