Skip to main content
Log in

Cartan rediscovered in general relativity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Élie Cartan’s invariant integral formalism is extended to gauge field theory, including general relativity. This constitutes an alternative procedure, as shown in several examples, that is equivalent when no second class constraints are present to the Rosenfeld, Bergmann, Dirac algorithm. In addition, a Hamilton–Jacobi formalism is developed for constructing explicit phase space functions in general relativity that are invariant under the full four-dimensional diffeomorphism group. These identify equivalence classes of classical solutions of Einstein’s equations. Each member is dependent on intrinsic spatial coordinates and also undergoes non-trivial evolution in intrinsic time. Furthermore, the construction yields series expansion solutions of the field equations for all of the components of the metric tensor, including lapse and shift, in the intrinsic temporal and spatial coordinates. The intrinsic coordinates are determined by the spacetime geometry in terms of Weyl scalars. The implications of this analysis for an eventual quantum theory of gravity are profound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. This will in the following be referred to as S22.

  2. A translation into English by Delphenich [10] is available.

  3. See S22 for more historical details.

  4. [9], p. 15.

  5. [9], p. 6–7.

  6. We have interchanged the meanings of Cartan’s original d and \(\delta \) notation.

  7. See S22.

  8. We employ the conventions of [21].

  9. These calculations are carried out explicitly in [37], and also in [40] where the projectability requirement is extended to Einstein–Yang–Mills theory. In the latter case, and indeed whenever additional gauge symmetries are present, it turns out that the full diffeomorphism-related symmetry is not present. Rather, it must be combined with additional gauge transformations [35, 38, 39]. The Cartan invariant integral and the derivation of the the gauge generator from the vanishing Noether charge is now also extended to Einstein–Yang–Mills theory [49] where a Yang–Mills gauge transformation must accompany the diffeomorphism-induced transformations in order to attain Legendre projectability.

  10. See [24] p. 119 and equation (1.1).

  11. See [15] for details.

  12. See [1], p. 192.

  13. See S22 for a detailed historical account of Cartan’s work, and its extension by Paul Weiss to field theory.

  14. See [47] for Bergmann’s use of Noether’s notation. Note also that this is a special case of the variations that were represented by \(\delta _0\) in S22.

  15. See for a translation into English of this article [44] and [52] for a careful analysis of the article and its relation to later work.

  16. See S22.

  17. See [47] for an account of this history.

  18. See [47], pp. 246–247 for further discussion.

  19. See S22.

  20. As noted in [37], no local Gribov gauge fixing ambiguities arise with the use of scalar phase space functions, and an example is given of their appearance for a non-scalar geometric object.

  21. See [41], p. 084015–7.

  22. On the other hand this distinction, between active and passive is fictional—as has been noted by [55], p. 439.

  23. ([3], p. 279.

  24. [6], p. 243

  25. [5], p. 17.

References

  1. Bergmann, P.G.: Introduction to the Theory of Relativity. Prentice Hall, New York (1942)

    MATH  Google Scholar 

  2. Bergmann, P.G.: Hamilton–Jacobi and Schrödinger theory in theories with first-class Hamiltonian constraints. Phys. Rev. 144(4), 1078–1080 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bergmann, P.G.: Geometry and observables. In: Earman, J., Glymour, C.N., Stachel, J.J., (eds) Foundations of Space-Time Theories, pp. 275–280 (1977)

  4. Bergmann, P.G.: The fading world point. In: Bergmann, P.G., Sabbata, V.D. (eds) Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity, pp. 173–176 (1979)

  5. Bergmann, P.G.: Observables in general relativity. In: de Sabbata, V., Melnikov, V.N. (eds.) Gravitational Measurements, Fundamental Metrology and Constants, pp. 15–18. Kluwer Academic Publisher, New York (1988)

    Chapter  Google Scholar 

  6. Bergmann, P.G., Komar, A.: The phase space formulation of general relativity and approaches toward its canonical quantization. In: Held, A. (ed) General Relativity and Gravitation, pp. 227–254 (1980)

  7. Bergmann, P.G., Komar, A.B.: Observables and commutation relations. In: Lichnerowicz, A., Tonnelat, M.A. (eds.) Les Théories Relativiste de la Gravitation, Royaumont 21–27 Juin, 1959, pp. 309–325. Centre National de la Recherche Scientifique (1962)

  8. Bergmann, P.G., Komar, A.B.: Status report on the quantization of the gravitational field. In: Infeld, L. (ed.) Recent Developments in General Relativity, pp. 31–46. Pergamon Press, Oxford (1962)

    Google Scholar 

  9. Cartan, E.: Leçons sur les Invariants Intégraux. Librairie Scientifique A, Hermann et Fils (1922)

    MATH  Google Scholar 

  10. Cartan, E.: Lessons on Integral Invariants. Hermann (1922)

  11. Castellani, L.: Symmetries in constrained hamiltonian systems. Ann. Phys. 143, 357–371 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  12. Chataignier, L.: On the construction of quantum Dirac observables and the emergence of WKB time. Phys. Rev. D 101, 086001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. Chataignier, L.: Relational observables, reference frames, and conditional probabilities. Phys. Rev. D 103, 026013 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  14. Christodoulou, M., Rovelli, C.: On the possibility of laboratory evidence for quantum superposition of geometries. Phys. Lett. B 792, 64–68 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. Danieli, A.: ADM formalism: a Hamiltonian approach to general relativity. Master’s thesis, Università degli Studi di Milano (2020)

  16. Deriglazov, A.: Classical Mechanics, 2nd edn. Springer, Hamiltonian, Larangian Formalism (2017)

    Book  MATH  Google Scholar 

  17. DeWitt, B.S.: The quantization of geometry. In: Witten, L. (ed) LL, pp. 266–381 (1962)

  18. Dittrich, B.: Partial and complete observables for Hamiltonian constrained systems. Gen. Relativ. Gravit. 39, 1891–1927 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Dominici, D., Gomis, J.: Poincaré-cartan integral invariant and canonical transformations for singular Lagrangians. J. Math. Phys. 21, 2124–2130 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Giddings, S.B., Marolf, D., Hartle, J.B.: Observables in effective gravity. Phys. Rev. D 74, 064018-1–20 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Griffiths, D.: Introduction to Electrodynamics, 3rd edn. Prentice Hall, New York (1999)

    Google Scholar 

  22. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)

    Book  MATH  Google Scholar 

  23. Jacobi, C.G.J.: Über die Reduction der Integration der partiellen Differentialgleichungen erster Ordnung zwishen irgend einer Zahl Variabeln auf die Integration eines einzigen Systems gewöhnlicher Differentialgleichungen. Crelle Journal für die reine und angewandte Mathematik 17, 97–162 (1837)

    Google Scholar 

  24. Kiefer, C.: Quantum Gravity, 3rd edn. Oxford University Press, Oxford (2012)

    MATH  Google Scholar 

  25. Kiefer, C.: The semiclassical approximation to quantum gravity and its observational consequences. J. Phys. Conf. Ser. 442, 012025-1–012025-7 (2013)

    Article  Google Scholar 

  26. Kiefer, C., Wichmann, D.: Semiclassical approximation of the Wheeler–Dewitt equation: arbitrary orders and the question of unitarity (2018). arXiv:1802.01422v2 [quant-ph]

  27. Komar, A.B.: Construction of a complete set of independent observables in the general theory of relativity. Phys. Rev. 111(4), 1182–1187 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Komar, A.B.: Hamilton–Jacobi quantization of general relativity. Phys. Rev. 153(5), 1385–1387 (1967)

    Article  ADS  MATH  Google Scholar 

  29. Komar, A.B.: Hamilton–Jacobi version of general relativity. Phys. Rev. 170(5), 1195–1200 (1968)

    Article  ADS  Google Scholar 

  30. Komar, A.B.: New properties of the Hamilton-Jacobi functional for general relativity. Phys. Rev. D 1(6), 1521–1523 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  31. Marolf, D.: Observables and a Hilbert space for Bianchi IX. Class. Quantum Gravity 12, 1441–1454 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Marolf, D.: Quantum observables and recollapsing dynamics. Class. Quantum Gravity 12, 1199–1220 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Newton, T.D., Wigner, E.P.: Localized states for elementary systems. Rev. Mod. Phys. 21(3), 400–406 (1949)

    Article  ADS  MATH  Google Scholar 

  34. Pitts, J.B.: Peter Bergmann on observables in Hamiltonian general relativity: a historical-critical investigation. Stud. Hist. Philos. Sci. 95, 1–27 (2022)

    Article  MathSciNet  Google Scholar 

  35. Pons, J., Salisbury, D.: The gauge group in the Ashtekar–Barbero formulation of canonical gravity. In: Gurzadyan, V., Jantzen, R.T., Ruffini, R. (eds) Proceedings of the Ninth Marcel Grossmann Meeting, pp. 1298–1299 (2002)

  36. Pons, J., Salisbury, D.: The issue of time in generally covariant theories and the Komar–Bergmann approach to observables in general relativity. Phys. Rev. D 71, 124012 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  37. Pons, J., Salisbury, D., Shepley, L.: Gauge transformations in the Lagrangian and Hamiltonian formalisms of generally covariant theories. Phys. Rev. D 55, 658–668 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  38. Pons, J., Salisbury, D., Shepley, L.: The gauge group and the reality conditions in Ashtekar’s formulation of general relativity. Phys. Rev. D 62, 064026–064040 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  39. Pons, J., Salisbury, D., Shepley, L.: The gauge group in the real triad formulation of general relativity. Gen. Relativ. Gravit. 32, 1727–1744 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Pons, J., Salisbury, D., Shepley, L.: Gauge transformations in Einstein–Yang–Mills theories. J. Math. Phys. 41(8), 5557–5571 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Pons, J., Salisbury, D., Sundermeyer, K.: Gravitational observables, intrinsic coordinates, and canonical maps. Mod. Phys. Lett. A 24, 725–732 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Pons, J., Salisbury, D., Sundermeyer, K.: Revisiting observables in generally covariant theories in light of gauge fixing methods. Phys. Rev. D 80, 084015-1–084015-23 (2009)

    Article  ADS  Google Scholar 

  43. Rosenfeld, L.: Zur Quantelung der Wellenfelder. Ann. Phys. 5, 113–152 (1930)

    Article  MATH  Google Scholar 

  44. Rosenfeld, L.: On the quantization of wave fields. Eur. Phys. J. H 42, 63–94 (2017)

    Article  Google Scholar 

  45. Rovelli, C.: Time in quantum gravity: an hypothesis. Phys. Rev. D 43(2), 442–456 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  46. Rovelli, C.: Partial observables. Phys. Rev. D 65, 124013-1–124013-8 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  47. Salisbury, D.: Toward a quantum theory of gravity: Syracuse 1949–1962. In: Blum, A., Lalli, R., Renn, J. (eds.) The Renaissance of General Relativity in Context, pp. 221–255. Birkhäuser, New York (2020)

    Chapter  MATH  Google Scholar 

  48. Salisbury, D.: A history of observables and Hamilton–Jacobi approaches to general relativity. Eur. Phys. J. H 47, 1–38 (2022)

    Article  Google Scholar 

  49. Salisbury, D.: A new approach to classical Einstein-Yang-Mills theory. To appear in Particles, Fields and Topology: A Celebration of A.P. Balachandran (2023)

  50. Salisbury, D., Renn, J., Sundermeyer, K.: Restoration of four-dimensional diffeomorphism covariance in canonical general relativity: an intrinsic Hamilton–Jacobi approach. Int. J. Mod. Phys. A 31(6), 1650014 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Salisbury, D., Renn, J., Sundermeyer, K.: Erratum. Restoration of four-dimensional diffeomorphism covariance in canonical general relativity: an intrinsic Hamilton–Jacobi approach. Int. J. Mod. Phys. A 33(2), 1892001 (2018)

    Article  ADS  MATH  Google Scholar 

  52. Salisbury, D., Sundermeyer, K.: Léon Rosenfeld’s general theory of constrained Hamiltonian dynamics. Eur. Phys. J. H 1–39 (2017)

  53. Salisbury, D.C., Helpert, J., Schmitz, A.: Reparameterization invariants for anisotropic Bianchi I cosmology with a massless scalar source. Gen. Relativ. Gravit. 40, 1475–1498 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Tsamis, N.C., Woodard, R.P.: Gauge problems with the equations of motion. Class. Quantum Gravity 2, 841–867 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  55. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  56. Woodard, R.P.: Enforcing the Wheeler–Dewitt constraint the easy way. Class. Quantum Gravity 10, 483–496 (1993)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Salisbury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salisbury, D., Renn, J. & Sundermeyer, K. Cartan rediscovered in general relativity. Gen Relativ Gravit 54, 116 (2022). https://doi.org/10.1007/s10714-022-03003-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-03003-5

Keywords

Navigation