Skip to main content
Log in

A simple property of the Weyl tensor for a shear, vorticity and acceleration-free velocity field

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

A Correction to this article was published on 26 September 2018

This article has been updated

Abstract

We prove that, in a space-time of dimension \(n>3\) with a velocity field that is shear-free, vorticity-free and acceleration-free, the covariant divergence of the Weyl tensor is zero if and only if the contraction of the Weyl tensor with the velocity is zero. This extends a property found in generalised Robertson–Walker spacetimes, where the velocity is also eigenvector of the Ricci tensor. Despite the simplicity of the statement, the proof is involved. As a product of the same calculation, we introduce a curvature tensor with an interesting recurrence property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 26 September 2018

    In our paper “A simple property of the Weyl tensor for a shear, vorticity and acceleration-free velocity field”.

References

  1. Adati, T., Miyazawa, T.: On a Riemannian space with recurrent conformal curvature. Tensor (N.S.) 18, 348–354 (1967)

    MathSciNet  MATH  Google Scholar 

  2. Alías, L., Romero, A., Sánchez, M.: Uniqueness of complete space-like hypersurfaces of constant mean curvature in generalized Robertson–Walker space-times. Gen. Relativ. Gravit. 27(1), 71–84 (1995)

    Article  ADS  Google Scholar 

  3. Chen, B.-Y.: Totally umbilical submanifolds. Soochow J. Math. 5, 9–37 (1979)

    MathSciNet  MATH  Google Scholar 

  4. Chen, B.-Y.: A simple characterization of generalized Robertson-Walker space-times. Gen. Relativ. Gravit. 46, 1833 (2014)

    Article  ADS  Google Scholar 

  5. Chen, B.-Y.: Rectifying submanifolds of Riemannian manifolds and torqued vector fields. Kragujevac J. Math. 41(1), 93–103 (2017)

    Article  MathSciNet  Google Scholar 

  6. Hervik, S., Ortaggio, M., Wylleman, L.: Minimal tensors and purely electric or magnetic space-times of arbitrary dimension. Class. Quantum Gravit. 30(16), 165014 (2013)

    Article  ADS  Google Scholar 

  7. Lovelock, D., Rund, H.: Tensors, Differential Forms, and Variational Principles (1975, Dover reprint, 1989)

  8. Mantica, C.A., Molinari, L.G.: Weyl compatible tensors. Int. J. Geom. Methods Mod. Phys. 11(8), 1450070 (2014)

    Article  MathSciNet  Google Scholar 

  9. Mantica, C.A., Molinari, L.G.: On the Weyl and Ricci tensors of generalized Robertson-Walker space-times. J. Math. Phys. 57(10), 102502 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Mantica, C.A., Molinari, L.G.: Generalized Robertson-Walker space-times–a survey. Int. J. Geom. Methods Mod. Phys. 14(3), 1730001 (2017)

    Article  MathSciNet  Google Scholar 

  11. Mantica, C.A., Molinari, L.G.: Twisted Lorentzian manifolds: a characterization with torse-forming time-like unit vectors. Gen. Relativ. Gravit. 49, 51 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Guido Molinari.

Appendix

Appendix

Proposition 4.4

In a twisted space the following identities hold among the Weyl tensor and the contracted Weyl tensor:

$$\begin{aligned} \nabla _p C_{ikm}{}^p= & {} (n-3)(\nabla _i E_{km} - \nabla _k E_{im})\nonumber \\&+ (n-2) [ u^p\nabla _p (u_i E_{km}-u_k E_{im} )\nonumber \\&+2 \varphi (u_iE_{km} - u_k E_{im})] \nonumber \\&+ (2u_k u_m +g_{km}) \nabla _p E_i{}^p - (2u_i u_m +g_{im}) \nabla _p E_k{}^p \quad \end{aligned}$$
(19)
$$\begin{aligned} (n-3)( u^p\nabla _p C_{iklm} + 2\varphi C_{iklm} )= & {} (n-2) [ u^p\nabla _p (u_i u_mE_{kl}\nonumber \\&-u_k u_mE_{il} -u_iu_l E_{km}+u_k u_l E_{im} ) \nonumber \\&+2\varphi (u_iu_mE_{kl} - u_k u_mE_{il} - u_iu_lE_{km} + u_k u_l E_{im}) ] \nonumber \\&+ [ u^p\nabla _p ( g_{im} E_{kl} - g_{km} E_{il} - g_{il} C_{km} + g_{kl} E_{im} ) \nonumber \\&+2\varphi (g_{im} E_{kl} - g_{km} E_{il} - g_{il} E_{km} + g_{kl} E_{im} )] \end{aligned}$$
(20)

Proof

Contraction of (13) with \(u^j\) is:

$$\begin{aligned} u^j \nabla _i C_{jklm} + u^j\nabla _j C_{kilm} + u^j \nabla _k C_{ijlm}= & {} \tfrac{1}{n-3} (u_m \nabla _p C_{kil}{}^p + u_l \nabla _p C_{ikm}{}^p) \\&+ \tfrac{1}{n-3} \nabla _p [u^j ( g_{km} C_{ijl}{}^p\\&+ g_{im} C_{jkl}{}^p+ g_{kl} C_{jim}{}^p + g_{il} C_{kjm}{}^p )] \\&-\tfrac{1}{n-3}\varphi u_p u^j (g_{km} C_{ijl}{}^p\\&+ g_{im} C_{jkl}{}^p + g_{kl} C_{jim}{}^p + g_{il} C_{kjm}{}^p ) \end{aligned}$$

Where possible, the vector \(u^k\) is taken inside covariant derivatives to take advantage of property (8)

$$\begin{aligned}&\nabla _i (u^jC_{jklm})-\varphi h_i^j C_{jklm} + u^j\nabla _j C_{kilm} + \nabla _k (u^jC_{ijlm})\\&\quad \quad -\varphi h^j_k C_{ijlm} = \tfrac{1}{n-3} (u_m \nabla _p C_{kil}{}^p \\&\quad \quad + u_l \nabla _p C_{ikm}{}^p) + \tfrac{1}{n-3} \nabla ^p [ g_{km}(u_p E_{li}-u_lE_{pi}) \\&\quad \quad + g_{im} (u_lE_{pk} - u_p E_{lk} ) + g_{kl} (u_m E_{pi} -u_p E_{mi}) + g_{il} (u_p C_{mk} -u_m E_{pk} ] \\&\quad \quad +\tfrac{1}{n-3}\varphi [g_{km} E_{il} - g_{im} E_{kl} - g_{kl} E_{im} + g_{il} E_{km} ] \\&\nabla _i (u_l E_{mk} -u_m E_{lk})-\varphi C_{iklm} - \varphi u_i (u_l E_{mk} -u_m E_{lk})+ u^j\nabla _j C_{kilm} \\&\quad \quad + \nabla _k ( u_m E_{li}-u_l \mathsf{}C_{mi}) -\varphi C_{iklm}-\varphi u_k ( u_m E_{li}-u_l \mathsf{}C_{mi})\\&\quad = \tfrac{1}{n-3} (u_m \nabla _p C_{kil}{}^p + u_l \nabla _p C_{ikm}{}^p) \\&\quad \quad + \tfrac{1}{n-3} u^p\nabla _p [ g_{km} E_{li} - g_{im} E_{lk} - g_{kl} E_{mi} + g_{il} C_{mk} ] \\&\quad \quad + \tfrac{1}{n-3} \nabla ^p [- g_{km} u_lE_{pi} + g_{im} u_lE_{pk} + g_{kl} u_m E_{pi} - g_{il} u_m E_{pk}] \\&\quad \quad +\tfrac{n}{n-3}\varphi [g_{km} E_{il} - g_{im} E_{kl} - g_{kl} E_{im} + g_{il} E_{km} ] \\&(n-3)[u_l (\nabla _i E_{mk} - \nabla _k E_{mi}) -u_m (\nabla _i E_{lk} - \nabla _kE_{li}) -2\varphi C_{iklm} + u^j\nabla _j C_{kilm} ]\\&\quad = (u_m \nabla _p C_{kil}{}^p + u_l \nabla _p C_{ikm}{}^p) + u^p\nabla _p [ g_{km} E_{li} - g_{im} E_{lk} - g_{kl} E_{mi} + g_{il} C_{mk} ] \\&\quad \quad - g_{km} u_l \nabla ^pE_{pi} + g_{im} u_l\nabla ^pE_{pk} + g_{kl} u_m \nabla ^pE_{pi} - g_{il} u_m \nabla ^pE_{pk} \\&\quad \quad +2\varphi [g_{km} E_{il} - g_{im} E_{kl} - g_{kl} E_{im} + g_{il} E_{km} ] \end{aligned}$$

Contraction with \(u^l\) yields the first result, (19):

$$\begin{aligned} \nabla _p C_{ikm}{}^p= & {} (n-3)(\nabla _i E_{km} - \nabla _k E_{im})\\&+ (n-2) [ u^p\nabla _p (u_i E_{km}-u_k E_{im} )\\&+2 \varphi (u_iE_{km} - u_k E_{im})]\\&+ (2u_k u_m +g_{km}) \nabla _p E_i{}^p \\&- (2u_i u_m +g_{im}) \nabla _p E_k{}^p \end{aligned}$$

which is used to replace the covariant divergences \(\nabla _p C_{jkl}{}^p\) in the previous expression

$$\begin{aligned}&(n-3)[u_l (\nabla _i E_{mk} - \nabla _k E_{mi}) -u_m (\nabla _i E_{lk} - \nabla _kE_{li}) -2\varphi C_{iklm} + u^j\nabla _j C_{kilm} ]\\&\quad = -u_m \{(n-3)(\nabla _i E_{kl}\\&\quad \quad - \nabla _k E_{il}) + (n-2) [ u^p\nabla _p (u_i E_{kl}-u_k E_{il} ) +2 \varphi (u_iE_{kl} - u_k E_{il})]\\&\quad \quad + (2u_k u_l +g_{kl}) \nabla _p E_i{}^p - (2u_i u_l +g_{il}) \nabla _p E_k{}^p\}\\&\quad \quad + u_l \{(n-3)(\nabla _i E_{km} - \nabla _k E_{im}) + (n-2) [ u^p\nabla _p (u_i E_{km}-u_k E_{im} )\\&\quad \quad +2 \varphi (u_iE_{km} - u_k E_{im})]\\&\quad \quad + (2u_k u_m +g_{km}) \nabla _p E_i{}^p - (2u_i u_m +g_{im}) \nabla _p E_k{}^p \}\\&\quad \quad + u^p\nabla _p [ g_{km} E_{li} - g_{im} E_{lk} - g_{kl} E_{mi} + g_{il} C_{mk}] \\&\quad \quad - g_{km} u_l \nabla ^pE_{pi} + g_{im} u_l\nabla ^pE_{pk} + g_{kl} u_m \nabla ^pE_{pi} - g_{il} u_m \nabla ^pE_{pk} \\&\quad \quad +2\varphi [g_{km} E_{il} - g_{im} E_{kl} - g_{kl} E_{im} + g_{il} E_{km} ] \end{aligned}$$

Some derivatives cancel, and we are left with

$$\begin{aligned} (n-3)[ -2\varphi C_{iklm} - u^p\nabla _p C_{iklm} ]= & {} -u_m \{ (n-2) [ u^p\nabla _p (u_i E_{kl}-u_k E_{il} ) \\&+2 \varphi (u_iE_{kl} - u_k E_{il})]\}\\&+ u_l \{ (n-2) [ u^p\nabla _p (u_i E_{km}-u_k E_{im} ) \\&+2 \varphi (u_iE_{km} - u_k E_{im})] \}\\&+ u^p\nabla _p [ g_{km} E_{li} - g_{im} E_{lk} - g_{kl} E_{mi} + g_{il} C_{mk} ] \\&+2\varphi [g_{km} E_{il} - g_{im} E_{kl} - g_{kl} E_{im} + g_{il} E_{km} ] \end{aligned}$$

The final equation is obtained. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molinari, L.G., Mantica, C.A. A simple property of the Weyl tensor for a shear, vorticity and acceleration-free velocity field. Gen Relativ Gravit 50, 81 (2018). https://doi.org/10.1007/s10714-018-2398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2398-9

Keywords

Mathematics Subject Classification

Navigation