Skip to main content
Log in

Brick walls and AdS/CFT

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We discuss the relationship between the bulk-boundary correspondence in Rehren’s algebraic holography (and in other ‘fixed-background’, QFT-based, approaches to holography) and in mainstream string-theoretic ‘Maldacena AdS/CFT’. Especially, we contrast the understanding of black-hole entropy from the point of view of QFT in curved spacetime—in the framework of ’t Hooft’s ‘brick wall’ model—with the understanding based on Maldacena AdS/CFT. We show that the brick-wall modification of a Klein–Gordon field in the Hartle–Hawking–Israel state on \(1+2\) dimensional Schwarzschild AdS has a well-defined boundary limit with the same temperature and entropy as the brick-wall-modified bulk theory. One of our main purposes is to point out a close connection, for general AdS/CFT situations, between the puzzle raised by Arnsdorf and Smolin regarding the relationship between Rehren’s algebraic holography and mainstream AdS/CFT and the puzzle embodied in the ‘complementarity principle’ proposed by Mukohyama and Israel in their work on the brick-wall approach to black hole entropy. Working on the assumption that similar results will hold for bulk QFT other than the Klein–Gordon field and for Schwarzschild AdS in other dimensions, and recalling the first author’s proposed resolution to the Mukohyama–Israel puzzle based on his ‘matter–gravity entanglement hypothesis’, we argue that, in Maldacena AdS/CFT, the algebra of the boundary CFT is isomorphic only to a proper subalgebra of the bulk algebra, albeit (at non-zero temperature) the (GNS) Hilbert spaces of bulk and boundary theories are still the ‘same’—the total bulk state being pure, while the boundary state is mixed (thermal). We also argue from the finiteness of its boundary (and hence, on our assumptions, also bulk) entropy at finite temperature, that the Rehren dual of the Maldacena boundary CFT cannot itself be a QFT and must, instead, presumably be something like a string theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The small Roman numerals in angle-brackets refer to the end section, Sect. 7, entitled ‘Notes’.

References

  1. Aharony, O., Gubser, S.S., Maldacena, J., Ooguri, J., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rept. 323, 183–386 (2000). arXiv:hep-th/9905111

  2. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998) [also published in 2000 as, Int. J. Theor. Phys. 38, 1113 (1999)]. arXiv:hep-th/9711200

  3. Rehren, K.H.: Algebraic holography. Ann. Henri Poincaré 1, 607–623 (2000). arXiv:hep-th/9905179

  4. Rehren, K.H.: Local quantum observables in the anti-de-Sitter-conformal QFT correspondence. Phys. Lett. B 493, 383–388 (2000). arXiv:hep-th/9905179

  5. Haag, R.: Local Quantum Physics, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  6. Kay, B.S., Larkin, P.: Pre-Holography. Phys. Rev. D 77, 121501R (2008). arXiv:0708.1283

  7. Greenberg, O.W.: Generalized free fields and models of local field theory. Ann. Phys. 16, 158–176 (1961)

    Article  ADS  MATH  Google Scholar 

  8. Duetsch, M., Rehren, K.H.: Generalized free fields and the AdS-CFT correspondence. Ann. Henri Poincaré 4, 613–635 (2003). arXiv:math-ph/0209035

  9. Bertola, M., Bros, J., Moschella, U., Schaeffer, R.: A general construction of conformal field theories from scalar anti-de Sitter quantum field theories. Nucl. Phys. B 587, 619 (2000). arXiv:hep-th/9908140

  10. Arnsdorf, M., Smolin, L.: The Maldacena conjecture and Rehren duality (2001). arXiv:hep-th/0106073

  11. Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150

  12. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998). arXiv:hep-th/9802109

  13. Rehren, K.H.: QFT lectures on AdS-CFT (2004). arXiv:hep-th/0411086

  14. Duetsch, M., Rehren, K.H.: A comment on the dual field in the AdS-CFT correspondence. Lett. Math. Phys. 62, 171 (2002). arXiv:hep-th/0204123

  15. Buchholz, D., Junglas, P.: Local properties of equilibrium states and the particle spectrum in quantum field theory. Lett. Math. Phys. 11, 51 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Bañados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Geometry of the (2+1) black hole. Phys. Rev. D 48, 1506 (1993). arXiv:gr-qc/9302012

  17. Lifschytz, G., Ortiz, M.: Scalar field quantization on the (2+1)-dimensional black hole background. Phys. Rev. D 49, 1929 (1994). arXiv:gr-qc/9310008

  18. Avis, S.J., Isham, C.J., Storey, D.: Quantum field theory in anti-de Sitter space–time. Phys. Rev. D 18, 3565 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hartle, J.B., Hawking, S.W.: Path integral derivation of black hole radiance. Phys. Rev. D 13, 2188 (1976)

    Article  ADS  Google Scholar 

  20. Israel, W.: Thermo field dynamics of black holes. Phys. Lett. A 57, 107 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate Killing horizon. Phys. Rept. 207, 49–136 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Kay, B.S.: Sufficient conditions for quasifree states and an improved uniqueness theorem for quantum fields on space-times with horizons. J. Math. Phys. 34(1993), 4519 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Unruh, W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  24. Maldacena, J.M.: Eternal black holes in anti-de Sitter. JHEP 0304, 021 (2003). arXiv:hep-th/0106112

  25. Kay, B.S.: Instability of enclosed horizons (2013). arXiv:1310.7395

  26. Witten, E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998). arXiv:hep-th/9803131

  27. Ross, S.F.: Black hole thermodynamics (2005). arXiv:hep-th/0502195

  28. Gibbons, G.W., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  29. Hawking, S.W.: The path-integral approach to quantum gravity. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  30. Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  31. Ortíz, L.: Hawking effect in the eternal BTZ black hole: an example of Holography in AdS spacetime. Gen. Relativ. Gravit. 45, 427 (2013). arXiv:1110.4451

  32. Ortíz, L.: Quantum fields on BTZ black holes. Ph.D. Thesis. University of York (2011)

  33. Keski-Vakkuri, E.: Bulk and boundary dynamics in BTZ black holes. Phys. Rev. D 59, 104001 (1999). arXiv:hep-th/9808037

  34. Kay, B.S.: The double wedge algebra for quantum fields on Schwarzschild and Minkowski spacetimes. Commun. Math. Phys. 100, 57–81 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Boulware, D.G.: Quantum field theory in Schwarzschild and Rindler spaces. Phys. Rev. D 11, 1404 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  36. ’t Hooft G.: On the quantum structure of a black hole. Nucl. Phys. B 256, 727 (1985)

  37. Mukohyama, S., Israel, W.: Black holes, brick walls and the Boulware state. Phys. Rev. D 58, 104005 (1998). arXiv:gr-qc/9806012

  38. Winstanley, E.: Renormalized black hole entropy in anti de Sitter space via the ‘brick wall’ method. Phys. Rev. D 63, 084013 (2001). arXiv:hep-th/0011176

  39. Kim, S.-W., Kim, W.T., Park, Y.-J., Shin, H.: Entropy of the BTZ black hole in 2+1 dimensions. Phys. Lett. B 392, 311–318 (1997). arXiv:hep-th/9603043

  40. Kay, B.S.: Entropy defined, entropy increase and decoherence understood, and some black hole puzzles solved (1998). arXiv:hep-th/9802172

  41. Kay, B.S.: Decoherence of macroscopic closed systems within Newtonian quantum gravity. Class. Quantum Gravity 15, L89–L98 (1998). arXiv:hep-th/9810077

  42. Abyaneh, V., Kay, B.S.: The robustness of a many-body decoherence formula of Kay under changes in graininess and shape of the bodies (2007). arXiv:gr-qc/0506039

  43. Kay, B.S., Abyaneh, V.: Expectation values, experimental predictions, events and entropy in quantum gravitationally decohered quantum mechanics (2007). arXiv:0710.0992

  44. Haag, R., Hugenholtz, N.M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215–236 (1967)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Kay, B.S.: Quantum field theory in curved spacetime. In: J.-P., Naber, G., Tsou, S.T. (eds.) Encyclopedia of Mathematical Physics edited by Françoise, vol. 4, p. 202. Academic [Elsevier], Amsterdam, New York (2006). arXiv:gr-qc/0601008

  46. Fulling, S.A., Ruijsenaars, S.N.M.: Temperature, periodicity and horizons. Phys. Rep. 152, 135–176 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  47. Kay, B.S.: Purification of KMS states. Helv. Phys. Acta 58, 1030–1040 (1985)

    MathSciNet  Google Scholar 

  48. Takahashi, Y., Umezawa, H.: Thermo field dynamics. Collect. Phenom. 2, 55–80 (1975)

    MathSciNet  Google Scholar 

  49. Takahashi, Y., Umezawa, H.: Thermo field dynamics. Int. J. Mod. Phys. B10, 1755–1805 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  50. Larkin, P.: Pre-Holography. Ph.D. Thesis, University of York (2007)

  51. Spradlin, M., Strominger, A.: Vacuum states for AdS(2) black holes. JHEP 9911, 021 (1999). arXiv:hep-th/9904143

  52. Reed, M., Simon, B.: Fourier Analysis, Self-adjointness, Methods of Modern Mathematical Physics, vol. 2. Academic, New York (1975)

  53. Kenmoku, M., Kuwata, M., Shigemoto, K.: Normal modes and no zero mode theorem of scalar fields in BTZ black hole spacetime. Class. Quantum Gravity 25, 145016 (2008). arXiv:0801.2044

  54. Ichinose, I., Satoh, Y.: Entropies of scalar fields on three-dimensional black holes. Nucl. Phys. B 447, 340–370 (1995). arXiv:hep-th/9412144

  55. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2751 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  56. Giddings, S.B.: Is string theory a theory of quantum gravity? To appear. In: G ’t Hooft, Verlinde, E., Dieks, D., de Haro, S. (eds.) 2012 Forty Years of String Theory: Reflecting on the Foundations Found. Phys. special issue to appear (2011). arXiv:1105.6359

  57. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377 (1995). arXiv:hep-th/9409089

  58. Kay, B.S.: On the origin of thermality (2012). arXiv:1209.5215

  59. Kay, B.S.: Modern foundations for thermodynamics and the stringy limit of black hole equilibria (2012). arXiv:1209.5085

  60. Kay, B.S.: More about the stringy limit of black hole equilibria (2012). arXiv:1209.5110

  61. Park, I.Y.: Fundamental versus solitonic description of D3-branes. Phys. Lett. B468, 213–218 (1999). arXiv:hep-th/9907142

  62. Kay, B.S.: A uniqueness result for quasifree KMS states. Helv. Phys. Acta 58, 1017–1029 (1985)

    MathSciNet  Google Scholar 

  63. Dimock, J.: Locality in free string field theory. J. Math. Phys. 41, 40–61 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Dimock, J.: Locality in free string field theory. Ann. Henri Poincare 3, 613–634 (2002). arXiv:math-ph/0102027

  65. Gubser, S.S., Klebanov, I.R., Peet, A.W.: Entropy and temperature of black 3-branes. Phys. Rev. D54, 3915–3919 (1996). arXiv:hep-th/9602135

  66. Klebanov, I.R.: TASI lectures: Introduction to the AdS/CFT correspondence (2000). arXiv:hep-th/0009139

  67. Ortín, T.: Gravity and Strings. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  68. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 [Erratum-ibid. 1976 46 206] (1975)

  69. Susskind, L., Uglum, J.: Black hole entropy in canonical quantum gravity and superstring theory. Phys. Rev. D 50, 2700–2711 (1994). arXiv:hep-th/9401070

  70. Barbón, J.L.F., Emparan, R.: On quantum black hole entropy and Newton constant renormalization. Phys. Rev. D 52, 4527–4539 (1995). arXiv:hep-th/9502155

  71. Wald, R.M.: General Relativity. University of Chicago Press, Chicago and London (1984)

    Book  MATH  Google Scholar 

  72. Francesco, P.D., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Springer, New York (1997)

    Book  MATH  Google Scholar 

  73. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series and products. Academic, New York (1980)

  74. Fewster, C.J., Verch, R.: Dynamical locality and covariance: what makes a physical theory the same in all spacetimes? (2011). arXiv:1106.4785

  75. Fewster, C.J., Verch, R.: Dynamical locality of the free scalar field (2011). arXiv:1109.6732

  76. Louko, J., Marolf, D.: Single exterior black holes and the AdS/CFT conjecture. Phys. Rev. D59, 066002 (1999). arXiv:hep-th/9808081

  77. Yang, D.: A simple proof of monogamy of entanglement. Phys. Lett. A 360, 249–250 (2006). arXiv:quant-ph/0604168

Download references

Acknowledgments

LO thanks the Mexican National Council for Science and Technology (CONACYT) for funding his research studentship in York. BSK is grateful to Michael Kay for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard S. Kay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kay, B.S., Ortíz, L. Brick walls and AdS/CFT. Gen Relativ Gravit 46, 1727 (2014). https://doi.org/10.1007/s10714-014-1727-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1727-x

Keywords

Navigation