Skip to main content
Log in

Area invariance of apparent horizons under arbitrary Lorentz boosts

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

It is a well known analytic result in general relativity that the 2-dimensional area of the apparent horizon of a black hole remains invariant regardless of the motion of the observer, and in fact is independent of the t = constant slice, which can be quite arbitrary in general relativity. Nonetheless the explicit computation of horizon area is often substantially more difficult in some frames (complicated by the coordinate form of the metric), than in other frames. Here we give an explicit demonstration for very restricted metric forms of (Schwarzschild and Kerr) vacuum black holes. In the Kerr–Schild coordinate expression for these spacetimes they have an explicit Lorentz-invariant form. We consider boosted versions with the black hole moving through the coordinate system. Since these are stationary black hole spacetimes, the apparent horizons are two dimensional cross sections of their event horizons, so we compute the areas of apparent horizons in the boosted space with (boosted) t = constant, and obtain the same result as in the unboosted case. Note that while the invariance of area is generic, we deal only with black holes in the Kerr–Schild form, and consider only one particularly simple change of slicing which amounts to a boost. Even with these restrictions we find that the results illuminate the physics of the horizon as a null surface and provide a useful pedagogical tool. As far as we can determine, this is the first explicit calculation of this type demonstrating the area invariance of horizons. Further, these calculations are directly relevant to transformations that arise in computational representation of moving black holes. We present an application of this result to initial data for boosted black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeWitt C., DeWitt B.S.: Black Holes. In: Proceedings of the 23rd Les Houches Summer School. Gordon and Breach, New York (1973)

    Google Scholar 

  2. Hawking S.W., Ellis G.F.R.: Large Scale Structure of Space–Time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  3. Binary Black Hole Grand Alliance: Phys. Rev. Lett. 80, 2512–2516 (1998)

    Google Scholar 

  4. Kerr, R.P., Schild, A.: A new class of vacuum solutions of the Einstein field equations. In: Barbera, G. (ed.) Proceedings of the Galileo Galilei Centenary Meeting on General Relativity, Problems of Energy and Gravitational Waves (1965)

  5. Huq, M.F.: Apparent horizon location in numerical spacetimes. Ph.D. Thesis, The University of Texas at Austin (2004)

  6. Matzner R., Huq M.F., Shoemaker D.: Phys. Rev. D 59, 024015 (1999) [arXiv:gr-qc/9805023]

    Article  MathSciNet  ADS  Google Scholar 

  7. Huq M.F., Choptuik M., Matzner R.A.: Phys. Rev. D 66, 084024 (2002) [arXiv:gr-qc/0002076]

    Article  MathSciNet  ADS  Google Scholar 

  8. Poisson E.: A Relativist’s Toolkit. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  9. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W.H. Freeman, New York (1970)

    Google Scholar 

  10. Hobson M.P., Efstathiou G., Lasenby A.N.: General Relativity. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  11. Chandrasekhar S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

  12. Pretorius F.: Phys. Rev. Lett. 95, 121101 (2005) [arXiv:gr-qc/0507014]

    Article  MathSciNet  ADS  Google Scholar 

  13. Baker J.G., Centrella J., Choi D.I., Koppitz M., van Meter J.: Phys. Rev. Lett. 96, 111102 (2006) [arXiv:gr-qc/0511103]

    Article  ADS  Google Scholar 

  14. Campanelli M., Lousto C.O., Marronetti P., Zlochower Y.: Phys. Rev. Lett. 96, 111101 (2006) [arXiv:gr-qc/0511048]

    Article  ADS  Google Scholar 

  15. Gonzalez, J.A., Hannam, M.D., Sperhake, U., Brügmann, B., Husa, S.: arXiv:gr-qc/0702052 (2007)

  16. Campanelli M., Lousto C.O., Zlochower Y., Merritt D.: Phys. Rev. Lett. 98, 231102 (2007) [arXiv:gr-qc/0702133]

    Article  ADS  Google Scholar 

  17. Brügmann, B., Gonzalez, J.A., Hannam, M., Husa, S., Sperhake, U.: arXiv:0707.0135 (2007)

  18. Brandt S., Brügmann B.: Phys. Rev. Lett. 78, 3606 (1997)

    Article  ADS  Google Scholar 

  19. Matzner R.A., Huq M.J., Shoemaker D.: Phys. Rev. D 59, 024015 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  20. Matzner, R.A., Nerozzi, A., Walter, P.: openGR (2009, in preparation)

  21. Sperhake U., Cardoso V., Pretorius F., Berti E., Gonzalez J.A.: Phys. Rev. Lett. 101, 161101 (2008)

    Article  ADS  Google Scholar 

  22. Shibata M., Okawa H., Yamamoto T.: Phys. Rev. D 78, 101501 (2008)

    Article  ADS  Google Scholar 

  23. Bonning E., Marronetti P., Neilsen D., Matzner R.A.: Phys. Rev. D 68, 044019 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  24. Hawley, S., Vitalo, M., Matzner, R.A.: arXiv:gr-qc/0604100 (2006)

  25. Genzel R., Schödel R., Ott T., Eckart A., Alexander T., Lacombe F., Rouan D., Aschenbach B.: Nature 425, 934 (2003)

    Article  ADS  Google Scholar 

  26. Shafee R., McClintock J.E., Narayan R., Davis S.W., Li L., Remillard R.A.: Astrophys. J. 636, L113 (2006)

    Article  ADS  Google Scholar 

  27. Broderick, A., Fish, V.L., Doeleman, S.S., Loeb, A.: arXiv.org: 0809.4490 (2008)

  28. Arnowitt R., Deser S., Misner C.: Gravitation, an Introduction to Current Research. Wiley, New York (1962)

    Google Scholar 

  29. Wald R.E., Iyer V.: Phys. Rev. D 44, 3719 (1991)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarp Akcay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akcay, S., Matzner, R.A. & Natchu, V. Area invariance of apparent horizons under arbitrary Lorentz boosts. Gen Relativ Gravit 42, 387–402 (2010). https://doi.org/10.1007/s10714-009-0859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0859-x

Keywords

Navigation