Skip to main content
Log in

Schwarzschild black hole as moving puncture in isotropic coordinates

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The success of the moving puncture method for the numerical simulation of black hole systems can be partially explained by the properties of stationary solutions of the 1 + log coordinate condition. We compute stationary 1 + log slices of the Schwarzschild spacetime in isotropic coordinates in order to investigate the coordinate singularity that the numerical methods have to handle at the puncture. We present an alternative integration method to obtain isotropic coordinates that simplifies numerical integration and that gives direct access to a local expansion in the isotropic radius near the puncture. Numerical results have shown that certain quantities are well approximated by a function linear in the isotropic radius near the puncture, while here we show that in some cases the isotropic radius appears with an exponent that is close to but unequal to one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campanelli M., Lousto C.O., Marronetti P., Zlochower Y.: Phys. Rev. Lett. 96, 111101 (2006)

    Article  ADS  Google Scholar 

  2. Baker J.G., Centrella J., Choi D.I., Koppitz M., van Meter J.: Phys. Rev. Lett. 96, 111102 (2006)

    Article  ADS  Google Scholar 

  3. Brandt S., Brügmann B.: Phys. Rev. Lett. 78(19), 3606 (1997)

    Article  ADS  Google Scholar 

  4. Beig R., O’Murchadha N.: Class. Quantum Grav. 11, 419 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Beig R., O’Murchadha N.: Class. Quantum Grav. 13, 739 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Dain S., Friedrich H.: Comm. Math. Phys. 222, 569 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Misner C., Wheeler J.: Ann. Phys. (N.Y.) 2, 525 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Brill D.R., Lindquist R.W.: Phys. Rev. 131, 471 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Hannam M., Husa S., Pollney D., Brügmann B., Ó Murchadha N.: Phys. Rev. Lett. 99, 241102 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. Brown J.D.: Phys. Rev. D 77, 044018 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Garfinkle D., Gundlach C., Hilditch D.: Class. Quant. Grav. 25, 075007 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hannam M., Husa S., Ohme F., Brügmann B., O’Murchadha N.: Phys. Rev. D 78, 064020 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hannam M., Husa S., Ó Murchadha N., Brügmann B., González J.A., Sperhake U.: J. Phys. Conf. Ser. 66, 012047 (2007)

    Article  ADS  Google Scholar 

  14. Baumgarte T.W., Naculich S.G.: Phys. Rev. D75, 067502 (2007)

    ADS  MathSciNet  Google Scholar 

  15. Buchman L.T., Bardeen J.M.: Phys. Rev. D 72, 124014 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ohme, F.: Slicing conditions in spherical symmetry. Diploma Thesis, Universität Jena (2007)

  17. Brown, J.D.: (2007). ArXiv:0705.3845 [gr-qc]

  18. Alcubierre M., Brügmann B., Diener P., Koppitz M., Pollney D., Seidel E., Takahashi R.: Phys. Rev. D 67, 084023 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  19. Brügmann B.: Int. J. Mod. Phys. 8, 85 (1999)

    MATH  ADS  Google Scholar 

  20. York, Jr. J.W., in Sources of Gravitational Radiation:ed. by L. Smarr, pp. 83–126. Cambridge University Press, Cambridge, (1979)

  21. Baumgarte T.W. et al.: Class. Quant. Grav. 26, 085007 (2009)

    Article  ADS  Google Scholar 

  22. Bona C., Massó J., Seidel E., Stela J.: Phys. Rev. Lett. 75, 600 (1995)

    Article  ADS  Google Scholar 

  23. Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T.: Numerical Recipes, 2nd edn. Cambridge University Press, New York (1992)

    Google Scholar 

  24. Gundlach C., Martin-Garcia J.M.: Phys. Rev. D 74, 024016 (2006)

    Article  ADS  Google Scholar 

  25. van Meter J.R., Baker J.G., Koppitz M., Choi D.I.: Phys. Rev. D 73, 124011 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. Cantor M.: J. Math. Phys. 20, 1741 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Brügmann.

Additional information

This paper is dedicated to the memory of Jürgen Ehlers. I have known JE for a number of years, in particular during his time as founding director of the Albert Einstein Institute in Potsdam. JE was the mentor of my habilitation thesis in 1996, and I am deeply thankful for many insightful discussions. JE combined great breadth and physical intuition with sharp analytical thought. His example inspired me to look beyond the numerical methods and results of numerical relativity to the analytic foundations. For example, while at the AEI, S. Brandt and I introduced “puncture initial data” for the numerical construction of general multiple black hole spacetimes [3]. While the puncture construction starts with an analytic trick of the sort that numerical relativists may devise, it is fair to say that the keen interest in analytical relativity created by JE at the AEI induced us to push our analysis one step further. As a result [3] connects to [26] for an existence and uniqueness proof for such black hole initial data, using weighted Sobolev spaces (see also [4–6]). The present work and its predecessors [9–12] represent an example where numerical experiments led to the discovery of an analytic solution for the 1 + log gauge for the Schwarzschild solution, and the present result, although modest, is of the type which I believe JE would have appreciated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brügmann, B. Schwarzschild black hole as moving puncture in isotropic coordinates. Gen Relativ Gravit 41, 2131–2151 (2009). https://doi.org/10.1007/s10714-009-0818-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0818-6

Keywords

Navigation