Skip to main content
Log in

The Newtonian limit of spacetimes for accelerated particles and black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Solutions of vacuum Einstein’s field equations describing uniformly accelerated particles or black holes belong to the class of boost-rotation symmetric spacetimes. They are the only explicit solutions known which represent moving finite objects. Their Newtonian limit is analyzed using the Ehlers frame theory. Generic spacetimes with axial and boost symmetries are first studied from the Newtonian perspective. The results are then illustrated by specific examples such as C-metric, Bonnor–Swaminarayan solutions, self-accelerating “dipole particles”, and generalized boost-rotation symmetric solutions describing freely falling particles in an external field. In contrast to some previous discussions, our results are physically plausible in the sense that the Newtonian limit corresponds to the fields of classical point masses accelerated uniformly in classical mechanics. This corroborates the physical significance of the boost-rotation symmetric spacetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcubierre, M., Gundlach, C., Siebel, F.: Integration of geodesics as a test bed for comparing exact and numerically generated spacetimes. In: Abstracts of Plenary Lectures and Contributed Papers (GR15) (1997)

  2. Antoci S., Liebscher D., Mihich L.: The physical meaning of the “boost-rotation symmetric” solutions within the general interpretation of Einstein’s theory of gravitation. Gen. Relat. Gravit. 38, 15–22 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bičák, J., Pravda, V.: Spinning C metric: Radiative spacetime with accelerating, rotating black holes. Phys. Rev. D 60, 044004, 10 p (1999)

    Google Scholar 

  4. Bičák, J.: Gravitational radiation from uniformly accelerated particles in general relativity. Proc. R. Soc. Lond. A 302, 201–224 (1968)

    ADS  Google Scholar 

  5. Bičák, J.: Selected solutions of Einstein’s field equations: their role in general relativity and astrophysics. In: Schmidt, B.G. (ed.) Einstein’s Field Equations and Their Physical Implications. Lecture Notes in Physics, vol. 540, pp. 1–126. Springer, Berlin (2000)

  6. Bičák, J., Hoenselaers C., Schmidt B.: The solutions of the Einstein equations for uniformly accelerated particles without nodal singularities. I. Freely falling particles in external fields. Proc. R. Soc. Lond. A 390, 397–409 (1983)

    ADS  Google Scholar 

  7. Bičák, J., Hoenselaers C., Schmidt B.: The solutions of the Einstein equations for uniformly accelerated particles without nodal singularities. II. Self-accelerating particles. Proc. R. Soc. Lond. A 390, 411–419 (1983)

    ADS  Google Scholar 

  8. Bičák, J., Pravdová A.: Symmetries of asymptotically flat electrovacuum space-times and radiation. J. Math. Phys. 39, 6011–6039 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bičák, J., Reilly P., Winicour J.: Boost-rotation symmetric gravitational null cone data. Gen. Relat. Gravit. 20, 171–181 (1988)

    Article  ADS  Google Scholar 

  10. Bičák, J., Schmidt B.: Isometries compatible with gravitational radiation. J. Math. Phys. 25, 600–606 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bičák, J., Schmidt B.: Asymptotically flat radiative space-times with boost-rotation symmetry: The general structure. Phys. Rev. D 40, 1827–1853 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bondi H.: Negative mass in general relativity. Rev. Mod. Phys 29, 423–428 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bonnor W.: The sources of the vacuum C-metric. Gen. Relat. Gravit. 15, 535–551 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bonnor W., Swaminarayan N.: An exact solution for uniformly accelerated particles in general relativity. Z. Phys. A 177, 240–256 (1964)

    MathSciNet  MATH  Google Scholar 

  15. Cartan E.: Les Variètès a connexion affine et La Théorie De La relativité Généralisée. Ann. Ecole Norm. 40, 326–412 (1922)

    Google Scholar 

  16. Cartan E.: Les Variètès a connexion affine et La Théorie De La relativité Généralisée. Ann. Ecole Norm. 41, 1–25 (1924)

    ADS  MathSciNet  Google Scholar 

  17. Corless R., Gonnet G., Hare D., Jeffrey D., Knuth D.: On the Lambert’s W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dowker H., Thambyahpillai S.: Many accelerating black holes. Class. Quantum Grav. 20, 127–135 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Dutta K., Ray S., Traschen J.: Boost mass and the mechanics of accelerated black holes. Class. Quantum Grav. 23, 335–352 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ehlers J.: Examples of Newtonian limits of relativistic spacetimes. Class. Quantum Grav. 14, A119–A126 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ehlers, J.: The Newtonian Limit of General Relativity. In: Understanding Physics. Copernicus Gesellschaft e.V., Katlenburg-Lindau (1998)

  22. Ehlers, J.: Newtonian limit of general relativity. In: Encyclopedia of Mathematical Physics, vol. 3, pp. 503–509. Elsevier, Amsterdam (2006)

  23. Ernst F.: Removal of the nodal singularity of the C-metric. J. Math. Phys. 17, 515–516 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  24. Friedrichs K.: Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzübergangs vom Einsteinschen zum Newtonschen Gesetz. Math. Ann. 98, 566–575 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gómez R., Papadopoulos P., Winicour J.: Null cone evolution of axisymmetric vacuum space-times. J. Math. Phys. 35, 4184–4204 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Israel W., Khan K.: Collinear particles and Bondi dipoles in general relativity. Nuov. Cim. 33, 331 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kinnersley W., Walker M.: Uniformly accelerating charged mass in general relativity. Phys. Rev. D 2, 1359–1370 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  28. Lazkoz R., Valiente Kroon J.: The Newtonian limit of spacetimes describing uniformly accelerated particles. Proc. R. Soc. Lond. A 460, 995–1016 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lazkos, R., Valiente Kroon, J.: The Newtonian limit of the spacetimes describing uniformly accelerated particles. In: Proceedings of the 10th Marcel Grossmann Meeting, Part C. World Scientific, Singapore (2005)

  30. MacCallum, M.A.H.: On singularities, horizons, invariants, and the results of Antoci, Liebscher and Mihich (Gen Relativ Gravit 38, 15 (2006) and earlier) 38, 1887–1899 (2006)

  31. Misner C., Thorne K., Wheeler J.: Gravitation. W.H. Freeman and Co., San Francisco (1973)

    Google Scholar 

  32. Pravda V., Pravdová A.: Boost-rotation symmetric spacetimes—review. Czech. J. Phys. 50, 333–375 (2000)

    Article  ADS  Google Scholar 

  33. Rindler W.: Relativity, Special, General, and Cosmological, Second edn. Oxford Univerisity Press, Oxford (2006)

    Google Scholar 

  34. Schmidt, B.: Private communication

  35. Scott S., Szekeres P.: The Curzon singularity. I: Spatial sections.. Gen. Relat. Grav. 18, 557–570 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Scott S., Szekeres P.: The Curzon singularity. II: Global picture.. Gen. Relat. Grav. 18, 571–583 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Steele, J., Lun, A.: On rational representation of stationary axisymmetric vacuum metrics I: cubic and quartic coordinates. In: Relativity Today: Proceedings of the Fourth Hungarian Workshop in Relativity (1994)

  38. Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  39. Trautman, A.: Comparison of Newtonian and relativistic theories of space-times. In: Perspectives in Geometry and Relativity, p. 425. Indiana University Press, Bloomington (1966)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kofroň.

Additional information

Dedicated to the memory of Jürgen Ehlers (29 December 1929 to 20 May 2008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bičák, J., Kofroň, D. The Newtonian limit of spacetimes for accelerated particles and black holes. Gen Relativ Gravit 41, 153–172 (2009). https://doi.org/10.1007/s10714-008-0662-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0662-0

Keywords

Navigation