Skip to main content
Log in

Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass Contrasts

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

During the last 15 years, more attention has been paid to derive analytic formulae for the gravitational potential and field of polyhedral mass bodies with complicated polynomial density contrasts, because such formulae can be more suitable to approximate the true mass density variations of the earth (e.g., sedimentary basins and bedrock topography) than methods that use finer volume discretization and constant density contrasts. In this study, we derive analytic formulae for gravity anomalies of arbitrary polyhedral bodies with complicated polynomial density contrasts in 3D space. The anomalous mass density is allowed to vary in both horizontal and vertical directions in a polynomial form of \(\lambda =ax^m+by^n+cz^t\), where mnt are nonnegative integers and abc are coefficients of mass density. First, the singular volume integrals of the gravity anomalies are transformed to regular or weakly singular surface integrals over each polygon of the polyhedral body. Then, in terms of the derived singularity-free analytic formulae of these surface integrals, singularity-free analytic formulae for gravity anomalies of arbitrary polyhedral bodies with horizontal and vertical polynomial density contrasts are obtained. For an arbitrary polyhedron, we successfully derived analytic formulae of the gravity potential and the gravity field in the case of \(m\le 1\), \(n\le 1\), \(t\le 1\), and an analytic formula of the gravity potential in the case of \(m=n=t=2\). For a rectangular prism, we derive an analytic formula of the gravity potential for \(m\le 3\), \(n\le 3\) and \(t\le 3\) and closed forms of the gravity field are presented for \(m\le 1\), \(n\le 1\) and \(t\le 4\). Besides generalizing previously published closed-form solutions for cases of constant and linear mass density contrasts to higher polynomial order, to our best knowledge, this is the first time that closed-form solutions are presented for the gravitational potential of a general polyhedral body with quadratic density contrast in all spatial directions and for the vertical gravitational field of a prismatic body with quartic density contrast along the vertical direction. To verify our new analytic formulae, a prismatic model with depth-dependent polynomial density contrast and a polyhedral body in the form of a triangular prism with constant contrast are tested. Excellent agreements between results of published analytic formulae and our results are achieved. Our new analytic formulae are useful tools to compute gravity anomalies of complicated mass density contrasts in the earth, when the observation sites are close to the surface or within mass bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abtahi SM, Pedersen LB, Kamm J, Kalscheuer T (2016) Consistency investigation, vertical gravity estimation and inversion of airborne gravity gradient tensor data—a case study from northern Sweden. Geophysics 81(3):B65–B76

    Article  Google Scholar 

  • Bajracharya S, Sideris M (2004) The Rudzki inversion gravimetric reduction scheme in geoid determination. J Geod 78(4–5):272–282. doi:10.1007/s00190-004-0397-y

    Article  Google Scholar 

  • Banerjee B, Das Gupta SP (1977) Gravitational attraction of a rectangular parallelepiped. Geophysics 42(5):1053–1055. doi:10.1190/1.1440766

    Article  Google Scholar 

  • Barnett CT (1976) Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body. Geophysics 41(6):1353–1364. doi:10.1190/1.1440685

    Article  Google Scholar 

  • Beiki M, Pedersen LB (2010) Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics 75(6):I37–I49. doi:10.1190/1.3484098

    Article  Google Scholar 

  • Blakely RJ (1996) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Cai Y, Cy Wang (2005) Fast finite-element calculation of gravity anomaly in complex geological regions. Geophys J Int 162(3):696–708. doi:10.1111/j.1365-246X.2005.02711.x

    Article  Google Scholar 

  • Chai Y, Hinze WJ (1988) Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics 53(6):837–845. doi:10.1190/1.1442518

    Article  Google Scholar 

  • Conway J (2015) Analytical solution from vector potentials for the gravitational field of a general polyhedron. Celest Mech Dyn Astron 121(1):17–38. doi:10.1007/s10569-014-9588-x

    Article  Google Scholar 

  • Conway JT (2016) Vector potentials for the gravitational interaction of extended bodies and laminas with analytical solutions for two disks. Celest Mech Dyn Astron 125(2):161–194. doi:10.1007/s10569-016-9679-y

    Article  Google Scholar 

  • De Castro DL, Fuck RA, Phillips JD, Vidotti RM, Bezerra FH, Dantas EL (2014) Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil. Tectonophysics 614:128–145

    Article  Google Scholar 

  • D’Urso MG (2013) On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J Geod 87(3):239–252. doi:10.1007/s00190-012-0592-1

    Article  Google Scholar 

  • D’Urso MG (2014a) Analytical computation of gravity effects for polyhedral bodies. J Geod 88(1):13–29. doi:10.1007/s00190-013-0664-x

    Article  Google Scholar 

  • D’Urso MG (2014b) Gravity effects of polyhedral bodies with linearly varying density. Celest Mech Dyn Astron 120(4):349–372. doi:10.1007/s10569-014-9578-z

    Article  Google Scholar 

  • D’Urso MG (2015) The gravity anomaly of a 2D polygonal body having density contrast given by polynomial functions. Surv Geophys 36(3):391–425. doi:10.1007/s10712-015-9317-3

    Article  Google Scholar 

  • D’Urso MG (2016) A remark on the computation of the gravitational potential of masses with linearly varying density. Springer, Cham, pp 205–212. doi:10.1007/1345_2015_138

    Google Scholar 

  • Farquharson C, Mosher C (2009) Three-dimensional modelling of gravity data using finite differences. J Appl Geophys 68(3):417–422

    Article  Google Scholar 

  • García-Abdeslem J (1992) Gravitational attraction of a rectangular prism with depth-dependent density. Geophysics 57(3):470–473. doi:10.1190/1.1443261

    Article  Google Scholar 

  • García-Abdeslem J (2005) The gravitational attraction of a right rectangular prism with density varying with depth following a cubic polynomial. Geophysics 70(6):J39–J42. doi:10.1190/1.2122413

    Article  Google Scholar 

  • Gradshteyn I, Ryzhik IM (1994) Table of integrals, series and products. Academic Press, New York

    Google Scholar 

  • Grant FS, West GF (1965) Interpretation theory in applied geophysics, vol 130. McGraw-Hill, New York

    Google Scholar 

  • Hamayun IP, Tenzer R (2009) The optimum expression for the gravitational potential of polyhedral bodies having a linearly varying density distribution. J Geod 83:1163–1170

    Article  Google Scholar 

  • Hansen RO (1999) An analytical expression for the gravity field of a polyhedral body with linearly varying density. Geophysics 64(1):75–77. doi:10.1190/1.1444532

    Article  Google Scholar 

  • Holstein H (2002) Gravimagnetic similarity in anomaly formulas for uniform polyhedra. Geophysics 67(4):1126–1133. doi:10.1190/1.1500373

    Article  Google Scholar 

  • Holstein H (2003) Gravimagnetic anomaly formulas for polyhedra of spatially linear media. Geophysics 68(1):157–167. doi:10.1190/1.1543203

    Article  Google Scholar 

  • Holstein H, Ketteridge B (1996) Gravimetric analysis of uniform polyhedra. Geophysics 61(2):357–364. doi:10.1190/1.1443964

    Article  Google Scholar 

  • Jahandari H, Farquharson CG (2013) Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids. Geophysics 78(3):G69–G80

    Article  Google Scholar 

  • Jin J (2002) The finite element method in electromagnetics. Wiley-IEEE Press, New York

    Google Scholar 

  • Kaftan I, Salk M, Sari C (2005) Application of the finite element method to gravity data case study: western Turkey. J Geodyn 39(5):431–443

    Article  Google Scholar 

  • Kamm J, Lundin IA, Bastani M, Sadeghi M, Pedersen LB (2015) Joint inversion of gravity, magnetic, and petrophysical data—a case study from a gabbro intrusion in Boden, Sweden. Geophysics 80(5):B131–B152. doi:10.1190/geo2014-0122.1

    Article  Google Scholar 

  • Kwok YK (1991) Gravity gradient tensors due to a polyhedron with polygonal facets. Geophys Prospect 39(3):435–443. doi:10.1111/j.1365-2478.1991.tb00320.x

    Article  Google Scholar 

  • Lelièvre PG, Farquharson CG, Hurich CA (2012) Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration. Geophysics 77(1):K1–K15. doi:10.1190/geo2011-0154.1

    Article  Google Scholar 

  • Li Y, Oldenburg DW (1998) 3-D inversion of gravity data. Geophysics 63(1):109–119. doi:10.1190/1.1444302

    Article  Google Scholar 

  • Martín-Atienza B, García-Abdeslem J (1999) 2-D gravity modeling with analytically defined geometry and quadratic polynomial density functions. Geophysics 64(6):1730–1734. doi:10.1190/1.1444677

    Article  Google Scholar 

  • Martinez C, Li Y, Krahenbuhl R, Braga MA (2013) 3D inversion of airborne gravity gradiometry data in mineral exploration: a case study in the Quadrilátero Ferrífero, Brazil. Geophysics 78(1):B1–B11. doi:10.1190/geo2012-0106.1

    Article  Google Scholar 

  • Moorkamp M, Heincke B, Jegen M, Roberts AW, Hobbs RW (2011) A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophys J Int 184(1):477–493

    Article  Google Scholar 

  • Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31(2):362–371. doi:10.1190/1.1439779

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geod 74(7–8):552–560. doi:10.1007/s001900000116

    Article  Google Scholar 

  • Okabe M (1979) Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics 44(4):730–741. doi:10.1190/1.1440973

    Article  Google Scholar 

  • Paul MK (1974) The gravity effect of a homogeneous polyhedron for three-dimensional interpretation. Pure Appl Geophys 112(3):553–561. doi:10.1007/BF00877292

    Article  Google Scholar 

  • Petrović S (1996) Determination of the potential of homogeneous polyhedral bodies using line integrals. J Geod 71(1):44–52. doi:10.1007/s001900050074

    Article  Google Scholar 

  • Pohanka V (1988) Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys Prospect 36(7):733–751. doi:10.1111/j.1365-2478.1988.tb02190.x

    Article  Google Scholar 

  • Pohanka V (1998) Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophys Prospect 46(4):391–404. doi:10.1046/j.1365-2478.1998.960335.x

    Article  Google Scholar 

  • Rao DB (1990) Analysis of gravity anomalies of sedimentary basins by an asymmetrical trapezoidal model with quadratic density function. Geophysics 55(2):226–231. doi:10.1190/1.1442830

    Article  Google Scholar 

  • Roberts AW, Hobbs RW, Goldstein M, Moorkamp M, Jegen M, Heincke B (2016) Joint stochastic constraint of a large data set from a salt dome. Geophysics 81(2):ID1–ID24

    Article  Google Scholar 

  • Smith DA (2000) The gravitational attraction of any polygonally shaped vertical prism with inclined top and bottom faces. J Geod 74(5):414–420. doi:10.1007/s001900000102

    Article  Google Scholar 

  • Tsoulis D, Wziontek H, Petrovic S (2003) A bilinear approximation of the surface relief in terrain correction computations. J Geod 77(5–6):338–344. doi:10.1007/s00190-003-0332-7

    Article  Google Scholar 

  • Tsoulis D (2012) Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals. Geophysics 77(2):F1–F11. doi:10.1190/geo2010-0334.1

    Article  Google Scholar 

  • Tsoulis D, Petrović S (2001) On the singularities of the gravity field of a homogeneous polyhedral body. Geophysics 66(2):535–539. doi:10.1190/1.1444944

    Article  Google Scholar 

  • Van der Meijde M, Juli J, Assumpo M (2013) Gravity derived Moho for South America. Tectonophysics 609:456–467

    Article  Google Scholar 

  • Waldvogel J (1979) The Newtonian potential of homogeneous polyhedra. Zeitschrift für angewandte Mathematik und Physik ZAMP 30(2):388–398. doi:10.1007/BF01601950

    Article  Google Scholar 

  • Werner RA (1994) The gravitational potential of a homogeneous polyhedron or don’t cut corners. Celest Mech Dyn Astron 59(3):253–278. doi:10.1007/BF00692875

    Article  Google Scholar 

  • Wilton D, Rao S, Glisson A, Schaubert D, Albundak O, Butler C (1984) Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains. IEEE Trans Antennas Propag 32(3):276–281

    Article  Google Scholar 

  • Zhang HL, Ravat D, Marangoni YR, Hu XY (2014) NAV-Edge: edge detection of potential-field sources using normalized anisotropy variance. Geophysics 79(3):J43–J53. doi:10.1190/geo2013-0218.1

    Article  Google Scholar 

  • Zhou X (2009a) 3D vector gravity potential and line integrals for the gravity anomaly of a rectangular prism with 3D variable density contrast. Geophysics 74(6):I43–I53. doi:10.1190/1.3239518

    Article  Google Scholar 

  • Zhou X (2009b) General line integrals for gravity anomalies of irregular 2D masses with horizontally and vertically dependent density contrast. Geophysics 74(2):I1–I7. doi:10.1190/1.3073761

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants from the National Basic Research Program of China (973-2015CB060200), the Project of Innovation-driven Plan in Central South University (2016CX005), the National Science Fundation of China (41574120, 41474103, 41204082), the State High-Tech Development Plan of China (2014AA06A602), and an award for outstanding young scientists by Central South University (Lieying program 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejia Pan.

Appendix: Closed Forms for Edge Integrals

Appendix: Closed Forms for Edge Integrals

We begin to derive the closed forms for edge integrals \(B_{j}^{q+2}\) and \({\mathbf {B}}_{j}^{q+2}\). In Fig. 1, given the edge \(C_{j} \in \partial H_{i}\) with two ordered vertices \(v_{0}\) and \(v_{1}\), the unit tangential vector of edge \(C_{j}\) is \(\hat{\mathbf {e}}_{j} = (\mathbf {v}_{1} - \mathbf {v}_{0})/|\mathbf {v}_{1} - \mathbf {v}_{0}|\). Edge \(C_{j}\) is parametrized by a single variable s, \(s=({\mathbf {r}}-{\mathbf {o}})\cdot \hat{\mathbf {e}}_{j}\). Furthermore, \(R=|{\mathbf {r}}^{\prime } -{\mathbf {r}}|=(h_{i}^2+m_{j}^2+s^2)^{1/2}\), \(({\mathbf {r}}-{\mathbf {o}})=\mathbf {\rho }\hat{\varvec{\rho }}\), and \(\hat{\varvec{\rho }}\) is a unit vector pointing from point \({\mathbf {o}}\) to point \({\mathbf {r}}\). The solid angle in Eqs. (33) and (34) is calculated as (Wilton et al. 1984)

$$\begin{aligned} \beta ({\mathbf {o}}) = \sum _{j=1}^{M} \beta ({\mathbf {o}})_{j} = \sum _{j=1}^{M} \hat{\mathbf {m}}_{j}\cdot \hat{\varvec{\rho }}_{j}^{\perp }\left( \arctan \frac{s_{1}}{|m_{j}|} -\arctan \frac{s_{0}}{|m_{j}|}\right) . \end{aligned}$$
(48)

Here \(\hat{\mathbf {\rho }_{j}}^{\perp }\) is the unit vector from point \({\mathbf {o}}\) to point \({\mathbf {r}}_{\perp }\). At point \({\mathbf {r}}_{\perp }\), \(s=0\). When point \({\mathbf {o}}\) is inside the polygon \(\partial H_{i}\), \(\beta ({\mathbf {o}})=2\pi\); \(\beta ({\mathbf {o}})=\pi\) when point \({\mathbf {o}}\) is on an edge of polygon \(\partial H_{i}\); \(\beta ({\mathbf {o}})=\varTheta\) when point \({\mathbf {o}}\) is at a corner of polygon \(\partial H_{i}\) with the corner angle \(\varTheta\); \(\beta ({\mathbf {o}})=0\) when point \({\mathbf {o}}\) is outside of polygon \(\partial H_{i}\).

Using the integral tables from Gradshteyn and Ryzhik (1994, equation (2.260.2)), we get

$$\begin{aligned} {\mathbf {B}}_{j}^{q+2}=\hat{\mathbf {m}_{j}} \int _{C_{j}}R^{q+2}\hbox {d}l&= \hat{\mathbf {m}_{j}} \int _{s_{0}}^{s_{1}}\left( \sqrt{h_{i}^2+m_{j}^2+s^2}\right) ^{q+2}\hbox {d}s \nonumber \\&= \frac{\hat{\mathbf {m}_{j}}}{q+3} s R^{q+2} \mid _{s_{0}}^{s_{1}} + \hat{\mathbf {m}_{j}}\frac{q+2}{q+3} (h_{i}^2+m_{j}^2) \int _{C_{j}} R^{q}\hbox {d}l, \end{aligned}$$
(49)

where \(s_{0}\) and \(s_{1}\) are the parametrized coordinates of the vertices \(\mathbf {v}_{0}\) and \(\mathbf {v}_{1}\), respectively. To compute the gravity field (with \(q=-1,1\)), we only need to calculate terms \(\int _{C_{j}} R\hbox {d}l\) and \(\int _{C_{j}} R^3\hbox {d}l\) which are regular even if the observation site \({\mathbf {r}}^{\prime }\) is located on an edge \(C_{j}\). The initial value for the recursive algorithm given by Eq. (49) is

$$\begin{aligned} \int _{C_{j}} R \hbox {d}l&= \frac{1}{2}\{(h_{i}^2+m_{j}^2) \ln \frac{s_{1}+R_{1}}{s_{0}+R_{0}} + s_{1}R_{1} - s_{0} R_{0} \}, \end{aligned}$$
(50)

where \(R_{1}\) and \(R_{0}\) are the distances from the point \({\mathbf {r}}^{\prime }\) to the vertices \(\mathbf {v}_{0}\) and \(\mathbf {v}_{1}\), respectively. When the observation site \({\mathbf {r}}^{\prime }\) is located on an edge \(C_{j}\), we simply set \((h_{i}^2+m_{j}^2)=0\) which eliminates the possible logarithmic singularity in expression (50).

Now, we deal with term \(B_{j}^{q+2}=\int _{C_{j}} \frac{R^{q+2}}{\rho ^{2}} \hbox {d}l\) (\(q=-1,1\)) in Eq. (34). When \(q=-1\), we have,

$$\begin{aligned} B_{j}^{1}= m_{j} \int _{C_{j}} \frac{R}{\rho ^{2}} \hbox {d}l&= m_{j} \int _{s_{0}}^{s_{1}} \frac{\sqrt{h_{i}^2+m_{j}^2+s^2}}{m_{j}^2+s^2} \hbox {d}s \nonumber \\&= m_{j} \left( \frac{|h_{i}| \arctan (\frac{|h_{i}| s }{m_{j} R}) }{m_{j}}+\ln (s+R) \right) |_{s_{0}}^{s_{1}} \nonumber \\&= |h_{i}| \left( \arctan \frac{|h_{i}| s_{1}}{m_{j} R_{1}} - \arctan \frac{|h_{i}| s_{0}}{m_{j} R_{0}}\right) + m_{j} \ln \frac{s_{1}+R_{1}}{s_{0}+R_{0}}. \end{aligned}$$
(51)

When \(q=1\), we have,

$$\begin{aligned} B_{j}^{3}= m_{j} \int _{C_{j}} \frac{R^{3}}{\rho ^{2}} \hbox {d}l&= m_{j} \int _{s_{0}}^{s_{1}} \frac{(\sqrt{h_{i}^2+m_{j}^2+s^2})^{3}}{m_{j}^2+s^2} \hbox {d}s \nonumber \\&= m_{j} \left[ \frac{|h_{i}|^3 \arctan (\frac{|h_{i}| s}{m_{j}R}) }{m_{j}} + \frac{1}{2} (3 h_{i}^2+m_{j}^2)\ln (s+R)+\frac{1}{2} sR \right] |_{s_{0}}^{s_{1}} \nonumber \\&= |h_{i}|^3 \left( \arctan \frac{|h_{i}| s_{1}}{m_{j} R_{1}} - \arctan \frac{|h_{i}| s_{0}}{m_{j} R_{0}}\right) \nonumber \\&\quad+ \frac{1}{2}m_{j}(3 h_{i}^2+m_{j}^2) \ln \frac{s_{1}+R_{1}}{s_{0}+R_{0}} + \frac{1}{2}m_{j} (s_{1}R_{1}-s_{0}R_{0}) \end{aligned}$$
(52)

In the above two equations, \(m_{j}=({\mathbf {r}}-{\mathbf {o}})\cdot \hat{\mathbf {m}}_{j}\) for \({\mathbf {r}}\in C_{j}\), therefore \(m_{j}\) can take both positive and negative values. When the observation site \({\mathbf {r}}^{\prime }\) is located on an edge \(C_{j}\) of the plane \(\partial H_{i}\), that is, \(m_{j}=0\) and \(h_{i}=0\), the above two integrals are free of singularities as we simply have \(B_{j}^1=0\) and \(B_{j}^3=0\). In Eq. (52), as \(\frac{\arctan {1/m_{j}}}{m_{j}}\) is an even function with respect to \(m_{j}\), the sign of \(m_{j}\) does not affect the value of the function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Chen, C., Pan, K. et al. Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass Contrasts. Surv Geophys 38, 479–502 (2017). https://doi.org/10.1007/s10712-016-9395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-016-9395-x

Keywords

Navigation