Skip to main content
Log in

Equivariant functions and integrals of elliptic functions

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper, we introduce the theory of equivariant functions by studying their analytic, geometric and algebraic properties. We also determine the necessary and sufficient conditions under which an equivariant form arises from modular forms. This study was motivated by observing examples of functions for which the Schwarzian derivative is a modular form on a discrete group. We also investigate the Fourier expansions of normalized equivariant functions, and a strong emphasis is made on the connections to elliptic functions and their integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York (1972)

    Google Scholar 

  2. Baker A.: On the Periods of the Weierstrass \({{\wp}}\) -Function Symposia Mathematica, vol. IV (INDAM, Rome, 1968/69), pp. 155–174. Academic Press, New York (1970)

    Google Scholar 

  3. Berndt B.C., Bialek P.R.: On the power series coefficients of certain quotients of Eisenstein series. Trans. Am. Math. Soc. 357, 4379–4412 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borcherds R.E.: Automorphic forms on \({O_{s+2,2}(\mathbb {R})}\) and infinite products. Invent. Math. 120, 161–213 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brady M.: Meromorphic solutions of a system of functional equations involving the modular group. Proc. Am. Math. Soc. 30, 271–277 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buchstaber V.M., Leykin D.V.: Solution of the problem of differentiation of Abelian functions over parameters for families of (n, s)-curves. Funct. Anal. Appl. 42(4), 268–278 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carleson L., Gamelin T.: Complex Dynamics. Springer, New York (1993)

    Book  MATH  Google Scholar 

  8. Cartan E.: Leçons sur la théorie des espaces à connexion projective. Gauthier-Villars, Paris (1937)

    MATH  Google Scholar 

  9. Doyle P., McMullen C.: Solving the quintic by iteration. Acta. Math. 163, 151–180 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duke W., Imamoglu Ö.: The zeros of the Weierstrass \({{\wp}}\) -function and hypergeometric series. Math. Ann. 340, 897–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eichler M., Zagier D.: On the zeros of the Weierstrass \({{\wp}}\) -function. Math. Ann. 258, 399–407 (1981)

    Article  MathSciNet  Google Scholar 

  12. Elbasraoui A., Sebbar A.: The zeros of the Eisenstein series E 2. Proc. Am. Math. Soc. 138(7), 2289–2299 (2010)

    Article  MathSciNet  Google Scholar 

  13. Frobenius F.G., Stickelberger L.: Über die differentiation der ellipyischen functionen nach den perioden und invarianten. J. Reine Angew. Math. 92, 311–327 (1882)

    MATH  Google Scholar 

  14. Hardy G.H., Ramanujan S.: On the coefficients in the expansions of certain modular functions. Proc. R. Soc. A 95, 144–155 (1918)

    Article  Google Scholar 

  15. Heins M.: On the pseudo-periods of the Weirstrass zeta-function. SIAM J. Numer. Anal. 3, 266–268 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  16. Houghton, C.J., Manton, N.S., Sutcliffe, P.M.: Rational maps, monopoles and skyrmions. Nucl. Phys. B 510 [PM], 507–537 (1998)

  17. Hurwitz A.: Sur le développement des fonctions satisfaisant à une équation différentielle algébrique. Ann. Sci. École Norm. Sup. 3(6), 327–332 (1889)

    MathSciNet  Google Scholar 

  18. Kaneko M., Yoshida M.: The kappa function. Int. J. Math 14–9, 1003–1013 (2003)

    Article  MathSciNet  Google Scholar 

  19. Knopp M., Mason G.: Generalized modular forms. J. Number Theory. 99, 1–28 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klein F.: Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree. Dover, New York (1956)

    MATH  Google Scholar 

  21. Lie, S.: Vorlesungen über continuierliche Gruppen mit Geometrischen und anderen Anwendungen. Chelsea Publishing Co., Bronx, New York (1971)

  22. Mahler K.: On algebraic differential equations satisfied by automorphic functions. J. Aust. Math. Soc. 10, 445–450 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mahler K.: Lectures on transcendental numbers Lecture Notes in Math., vol. 546. Springer, Berlin (1976)

    Google Scholar 

  24. Maillet E.: Introduction à la théorie des nombres transcendants et des proprités arithmétiques des fonctions. Gauthier-Villars, Paris (1906)

    Google Scholar 

  25. McKay J., Sebbar A.: Fuchsian groups, automorphic functions and Schwarzians. Math. Ann. 318, 255–275 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pólya G., Szegö G.: Problems and Theorems in Analysis, vol. I. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  27. Ramanujan S.: On certain arithmetical functions. Trans. Camb. Philos. Soc. 22, 159–184 (1916)

    Google Scholar 

  28. Rankin R.A.: Modular Forms and Functions. Cambridge University Press, Cambridge (1977)

    Book  MATH  Google Scholar 

  29. Resnikoff H.L.: On differential operators and automorphic forms. Trans. Am. Math. Soc. 124, 334–346 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schappacher, N.: Some milestones of Lemniscatomy. Lecture Notes in Pure and Applied Mathematics Series 193. M. Dekker, New York, 257–290 (1997)

  31. Schwarz H.A.: Gesammelte Mathematische Abhandlungen, vol. 2. Springer, Berlin (1880)

    Google Scholar 

  32. Sebbar, A. Sebbar, A.: Eisenstein series and modular differential equations. Can. Math. Bull. doi:10.4153/CMB-2011-091-3

  33. Sibuya Y., Sperber S.: Arithmetic properties of power series solutions of algebraic differential equations. Ann. Math. (2) 113(1), 111–157 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Smart J.: On meromorphic functions commuting with elements of a function group. Proc. Am. Math. Soc. 33, 343–348 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tannery J., Molk J.: Eléments de la théorie des fonctions elliptiques, pp. 1893–1902. Gauthier-Villars, Paris (1990)

    Google Scholar 

  36. Whittaker E.T., Watson G.N.: A Course in Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  37. Zagier D.: Elliptic Modular Forms and Their Applications in: The 1-2-3 of Modular Forms Universitext. Springer, Berlin (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Sebbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebbar, A., Sebbar, A. Equivariant functions and integrals of elliptic functions. Geom Dedicata 160, 373–414 (2012). https://doi.org/10.1007/s10711-011-9688-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-011-9688-7

Keywords

Mathematics Subject Classification (2000)

Navigation