Skip to main content

Advertisement

Log in

Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let Г be a torsion-free uniform lattice of SU(m, 1), m > 1. Let G be either SU(p, 2) with p ≥ 2, \({{\rm Sp}(2,\mathbb {R})}\) or SO(p, 2) with p ≥ 3. The symmetric spaces associated to these G’s are the classical bounded symmetric domains of rank 2, with the exceptions of SO*(8)/U(4) and SO*(10)/U(5). Using the correspondence between representations of fundamental groups of Kähler manifolds and Higgs bundles we study representations of the lattice Г into G. We prove that the Toledo invariant associated to such a representation satisfies a Milnor-Wood type inequality and that in case of equality necessarily G = SU(p, 2) with p ≥ 2m and the representation is reductive, faithful, discrete, and stabilizes a copy of complex hyperbolic space (of maximal possible induced holomorphic sectional curvature) holomorphically and totally geodesically embedded in the Hermitian symmetric space SU(p, 2)/S(U(p) × U(2)), on which it acts cocompactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradlow S.B., Garcia-Prada O., Gothen P.B.: Surface group representations and U(p,q)-Higgs bundles. J. Diff. Geom. 64, 111–170 (2003)

    MATH  MathSciNet  Google Scholar 

  2. Bradlow S.B., Garcia-Prada O., Gothen P.B.: Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces. Geom. Dedicata. 122, 185–213 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burger M., Iozzi A.: Bounded differential forms, generalized Milnor-Wood inequality and an application to deformation rigidity. Geom. Dedicata. 125, 1–23 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burger M., Iozzi A., Wienhard A.: Surface group representations with maximal Toledo invariant. C.R. Acad. Sci. Paris 336, 387–390 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Burger, M., Iozzi, A., Wienhard, A.: Surface group representations with maximal Toledo invariant. arXiv:math.DG/0605656 v2 (2006)

  6. Clerc J.-L., Ørsted B.: The Maslov index revisited. Tranform. Groups. 6, 303–320 (2001)

    Article  MATH  Google Scholar 

  7. Corlette K.: Flat G-bundles with canonical metrics. J. Diff. Geom. 28, 361–382 (1988)

    MATH  MathSciNet  Google Scholar 

  8. Domic A., Toledo D.: The Gromov norm of the Kähler class of symmetric domains. Math. Ann. 276, 425–432 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eberlein, P.: Geometry of nonpositively curved manifolds. In: Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1996)

  10. Goldman, W.M.: Discontinuous groups and the Euler class. Thesis, University of California at Berkeley (1980)

  11. Goldman W.M.: Topological components of spaces of representations. Invent. Math. 93(3), 557–607 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goldman W.M., Millson J.J.: Local rigidity of discrete groups acting on complex hyperbolic space. Invent. Math. 88, 495–520 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Corrected reprint of the 1978 original, Graduate Studies in Mathematics, 34. American Mathematical Society, Providence (2001)

  14. Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. Lon. Math. Soc. 55(3), 59–126 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hitchin N.J.: Lie groups and Teichmüller space. Topology 31, 449–473 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huybrechts, D., Lehn, M.: The geometry of moduli spaces of sheaves. In: Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig (1997)

  17. Kobayashi, S.: Differential Geometry of Complex Vector Bundles. Princeton University Press (1987)

  18. Koziarz V., Maubon J.: Harmonic maps and representations of non-uniform lattices of PU(m,1). Ann. Inst. Fourier (Grenoble) 58(2), 507–558 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Labourie F.: Existence d’applications harmoniques tordues à valeurs dans les variétés à courbure négative. Proc. Am. Math. Soc. 111(3), 877–882 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Royden H.L.: The Ahlfors-Schwarz lemma in several complex variables. Comment. Math. Helvetici. 55, 547–558 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sampson J.H.: Applications of harmonic maps to Kähler geometry. Contemp. Math. 49, 125–133 (1986)

    MATH  MathSciNet  Google Scholar 

  22. Satake, I.: Algebraic structures of symmetric domains. In: Kanô Memorial Lectures, 4, Iwanami Shoten, Tokyo. Princeton University Press, Princeton (1980)

  23. Simpson C.T.: Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Am. Math. Soc. 1, 867–918 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Simpson C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Simpson C.T.: Moduli of representations of the fundamental group of a smooth projective variety I. Inst. Hautes Études Sci. Publ. Math. 79, 47–129 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Simpson C.T.: Moduli of representations of the fundamental group of a smooth projective variety II. Inst. Hautes Études Sci. Publ. Math. 80, 5–79 (1994)

    Article  MathSciNet  Google Scholar 

  27. Toledo D.: Harmonic mappings of surfaces to certain Kähler manifolds. Math. Scand. 45, 13–26 (1979)

    MATH  MathSciNet  Google Scholar 

  28. Toledo D.: Representations of surface groups in complex hyperbolic space. J. Diff. Geom. 29, 125–133 (1989)

    MATH  MathSciNet  Google Scholar 

  29. Viehweg E., Zuo K.: Arakelov inequalities and the uniformization of certain rigid Shimura varieties. J. Diff. Geom. 77(2), 291–352 (2007)

    MATH  MathSciNet  Google Scholar 

  30. Xia E.Z.: The moduli of flat PU(2,1) structures over Riemann surfaces. Pacific J. Math. 193, 231–256 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Maubon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koziarz, V., Maubon, J. Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type. Geom Dedicata 137, 85–111 (2008). https://doi.org/10.1007/s10711-008-9288-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-008-9288-3

Keywords

Navigation