Skip to main content
Log in

Projective Completions of Jordan Pairs, Part II: Manifold Structures and Symmetric Spaces

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We define symmetric spaces in arbitrary dimension and over arbitrary non-discrete topological fields \(\mathbb{K}\), and we construct manifolds and symmetric spaces associated to topological continuous quasi-inverse Jordan pairs and -triple systems. This class of spaces, called smooth generalized projective geometries, generalizes the well-known (finite or infinite-dimensional) bounded symmetric domains as well as their ‘compact-like’ duals. An interpretation of such geometries as models of Quantum Mechanics is proposed, and particular attention is paid to geometries that might be considered as ‘standard models’ – they are associated to associative continuous inverse algebras and to Jordan algebras of hermitian elements in such an algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashtekar A., Schilling T.A. Geometrical formulation of quantum mechanics, preprint 1997, arXive: gr-qc/9706069

  2. W. Bertram (1996) ArticleTitleOn some causal and conformal groups J. Lie Theory. 6 215–247

    Google Scholar 

  3. W. Bertram (2000) The Geometry of Jordan and Lie Structures, Lecture Notes in Math. 1754 Springer-Verlag Berlin

    Google Scholar 

  4. W. Bertram (2002) ArticleTitleGeneralized projective geometries: general theory and equivalence with Jordan structures Adv. Geom. 2 329–369

    Google Scholar 

  5. W. Bertram (2003) ArticleTitleThe geometry of null-systems, Jordan algebras and von Staudt’s theorem Ann. Inst. Fourier. 53 IssueID1 193–225

    Google Scholar 

  6. Bertram W. Differential geometry over general base fields and -rings. I,-II., series of 5 preprints Nancy 2003-5, available at: http://www.iecu.u-nancy.fr/preprints

  7. W. Bertram H. Glöckner K.-H. Neeb (2004) ArticleTitleDifferentiable calculus over general base fields and rings Expo. Math. 22 213–282

    Google Scholar 

  8. Bertram W., Löwe H. Incidence geometries associated to Jordan pairs, in preparation

  9. W. Bertram K.-H. Neeb (2004) ArticleTitleProjective completions of Jordan pairs. Part I. The generalized projective geometry of a Lie algebra J. Algebra. 277 IssueID2 474–519 Occurrence Handle10.1016/j.jalgebra.2003.10.034

    Article  Google Scholar 

  10. A. Blunck H. Havlicek (2001) ArticleTitleThe connected components of the projective line over a ring Adv. Geom. 1 107–117

    Google Scholar 

  11. J.-B. Bost (1990) ArticleTitlePrincipe d’Oka, K-theorie et systèmes dynamiques non-commutatifs Invent. Math. 101 261–333 Occurrence Handle10.1007/BF01231504

    Article  Google Scholar 

  12. R. Cirelli M. Gatti A. Manià (2003) ArticleTitleThe pure state space of quantum mechanics as hermitian symmetric space J. Geom. Phys. 45 267–284 Occurrence Handle10.1016/S0393-0440(01)00031-6

    Article  Google Scholar 

  13. J. Dorfmeiser E. Neher J. Szmigielski (1989) ArticleTitleAutomorphisms of Banach manifolds associated with the KP-equation Quart. J. Math. Oxford. (2) 40 161–195

    Google Scholar 

  14. Dorfmeiser J., Neher E., Szmigielski J. Banach manifolds and their automorphisms associated with groups of type C and D, In: Lie Algebras and Related Topics, Proc. Res. Conf., Madison, WI (USA). 1988, Contemp. Math. 110, Amer. Math. Soc., Providence 1990, pp. 43–65

  15. J. Faraut A. Koranyi (1994) Analysis on Symmetric Cones Clarendon Press Oxford

    Google Scholar 

  16. Glöckner, H.: Infinite-dimensional Lie groups without completeness restrictions, in: A. Strasburger et al. (eds), Geometry and Analysis on Lie Groups, Banach Center Publications, 55, Warsaw 2002, pp. 53–59

  17. H. Glöckner (2002) ArticleTitleAlgebras whose groups of units are Lie groups Studia Math. 153 IssueID2 147–177

    Google Scholar 

  18. de la Harpe, P.: Classical Banach Lie Algebras and Banach–Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer-Verlag, Berlin, 1972

  19. R. Hamilton (1982) ArticleTitleThe inverse function theorem of Nash and Moser Bull Amer. Math. Soc. 7 65–222

    Google Scholar 

  20. A. Herzer (1995) Chain geometries F. Buekenhout (Eds) Handbook of Incidence Geometry. Elsevier Amsterdam

    Google Scholar 

  21. J.M. Isidro M. Mackey (2002) ArticleTitleThe manifold of finite rank projections in the algebra \({\cal L}(H)\) of bounded linear operators Expo. Math. 20 97–116

    Google Scholar 

  22. P. Jordan J. Neumann Particlevon E. Wigner (1934) ArticleTitleOn an algebraic generalization of the quantum mechanical formalism Ann Math 35 29–64 Occurrence HandleMR1503141

    MathSciNet  Google Scholar 

  23. Kaup W. Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension I, II, Math. Annal. 257. (1981), 463–486; 262. (1983), 57–75

  24. W. Kaup (2001) ArticleTitleOn Grassmannians associated with JB*-triples Math. Z. 236 567–584

    Google Scholar 

  25. H.H. Keller (1974) Differential Calculus in Locally Convex Spaces, Lecture Notes in Math Springer-Verlag New York

    Google Scholar 

  26. O. Loos (1969) Symmetric Spaces I Benjamin New York

    Google Scholar 

  27. O. Loos (1975) Jordan Pairs, Lecture Notes in Math. 460 Springer-Verlag New York

    Google Scholar 

  28. O. Loos (1994) ArticleTitleDecomposition of projective spaces defined by unit-regular Jordan pairs Comm. Algebra. 22 IssueID10 3925–3964

    Google Scholar 

  29. O. Loos (1996) ArticleTitleOn the set of invertible elements in Banach–Jordan algebras Results Math. 29 111–114

    Google Scholar 

  30. M. Mackey P. Mellon (2001) ArticleTitleCompact-like manifolds associated to JB*-triples Manuscripta Math. 106 203–212 Occurrence Handle10.1007/s002290100202

    Article  Google Scholar 

  31. K. McCrimmon (2004) A Taste of Jordan Algebras Springer-Verlag New York

    Google Scholar 

  32. K.-H. Neeb (2002) ArticleTitleA Cartan–Hadamard theorem for Banach–Finsler manifolds Geom. Dedicata. 95 115–156 Occurrence Handle10.1023/A:1021221029301

    Article  Google Scholar 

  33. A. Pressley G. Segal (1986) Loop Groups Oxford University Press Oxford

    Google Scholar 

  34. W. Thirring (1981) A Course in Mathematical Physics. Vol. 3: Quantum Mechanics of Atoms and Molecules Springer-Verlag New York

    Google Scholar 

  35. Upmeier H. (1985). Symmetric Banach Manifolds and Jordan C*-algebras, North-Holland Math. Stud., North-Holland, Amsterdam

  36. V.S. Varadarajan (1985) Geometry of Quantum Theory Springer-Verlag New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Bertram.

Additional information

Mathematics Subject Classiffications (2000). primary: 17C36, 46H70, 17C65; secondary: 17C30, 17C90

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, W., Neeb, KH. Projective Completions of Jordan Pairs, Part II: Manifold Structures and Symmetric Spaces. Geom Dedicata 112, 73–113 (2005). https://doi.org/10.1007/s10711-004-4197-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-004-4197-6

Keywords

Navigation