Skip to main content
Log in

De novo assembly, transcriptome characterization and marker discovery in Indian major carp, Labeo rohita through pyrosequencing

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Labeo rohita, one of the Indian major carps, is the most popular culture species in Indian subcontinent due to its consumer preference and delicacy. A selective breeding program for harvest body weight has resulted in an average genetic gain of 17% per generation. Transcriptome resource for this species is scanty. Here, we have characterized the liver and muscle transcriptomes of rohu using Roche 454 GS-FLX next generation sequencing platform. In total, 1.2 million reads were generated, de novo assembly and clustering resulted in 4171 transcripts. Out of these, 4171 had significant blast hit against NCBI nr database, and 2130 transcripts were successfully annotated. In total, 289 SSRs were identified with an identification rate of 5.8%, and dinucleotide repeat motifs were observed to be the most abundant SSRs. Further, 2231 putative SNPs were identified with high confidence. Validation of eight putative SNPs using Sanger sequencing resulted in 100% true SNPs. Significant allelic imbalance of M1, M4 and M5 loci between growth selected and control individual were observed. Furthermore, 13 transcription factors were identified in the present study belonging to six different transcription factor families. The present study demonstrated the utility of RNAseq to develop genomics resources in non-model fish species, and the marker resources developed would support the genetic improvement program of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The RNA-seq data were submitted in the GenBank with Biosample accession number SAMN15062925, SAMN15062926, SAMN15062927, SAMN15062928.

References

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  CAS  PubMed  Google Scholar 

  • Avise JC (2012) Molecular markers, natural history and evolution. Springer Science & Business Media

  • Ayyappan S, Jena JK (2001) Sustainable freshwater aquaculture in India. Sustain Indian Fish 88–131

  • Barbara T, Palma-Silva C, Paggi GM et al (2007) Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol Ecol 16:3759–3767

    Article  PubMed  Google Scholar 

  • Barbazuk WB, Emrich SJ, Chen HD et al (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouck AMY, Vision T (2007) The molecular ecologist’s guide to expressed sequence tags. Mol Ecol 16:907–924

    Article  CAS  PubMed  Google Scholar 

  • Calduch-Giner JA, Bermejo-Nogales A, Benedito-Palos L et al (2013) Deep sequencing for de novo construction of a marine fish (Sparus aurata) transcriptome database with a large coverage of protein-coding transcripts. BMC Genomics 14:1–11

    Article  Google Scholar 

  • Carruthers M, Yurchenko AA, Augley JJ et al (2018) De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species. BMC Genomics 19:1–17

    Google Scholar 

  • Castoe TA, Poole AW, Gu W et al (2010) Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Mol Ecol Resour 10:341–347

    Article  CAS  PubMed  Google Scholar 

  • Chaisson MJ, Pevzner PA (2008) Short read fragment assembly of bacterial genomes. Genome Res 18:324–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Li J, Xiao S, Liu X (2016) De novo assembly and characterization of foot transcriptome and microsatellite marker development for paphia textile. Gene 576:537–543

    Article  CAS  PubMed  Google Scholar 

  • Chistiakov DA, Hellemans B, Volckaert FA (2006) Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture 255:1–29

    Article  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Cowles MW, Brown DD, Nisperos SV et al (2013) Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration. Development 140:4691–4702

    Article  CAS  PubMed  Google Scholar 

  • Das P, Barat A, Meher PK et al (2005) Isolation and characterization of polymorphic microsatellites in Labeo rohita and their cross-species amplification in related species. Mol Ecol Notes 5:231–233

    Article  CAS  Google Scholar 

  • Das P, Sahoo L, Das SP et al (2020) De novo assembly and genome-wide SNP discovery in Rohu Carp. Labeo Rohita Front Genet 11:386

    Article  CAS  PubMed  Google Scholar 

  • Deppmann CD, Alvania RS, Taparowsky EJ (2006) Cross-species annotation of basic leucine zipper factor interactions: Insight into the evolution of closed interaction networks. Mol Biol Evol 23:1480–1492

    Article  CAS  PubMed  Google Scholar 

  • Emrich SJ, Barbazuk WB, Li L, Schnable PS (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res 17:69–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2005). Fishstat Plus (v. 2.30). FAO, Rome, Italy

  • Geay F, Ferraresso S, Zambonino-Infante JL et al (2011) Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC Genomics 12:1–18

    Article  Google Scholar 

  • Hahn DA, Ragland GJ, Shoemaker DD, Denlinger DL (2009) Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis. BMC Genomics 10:1–9

    Article  Google Scholar 

  • Hall T BioEdit version 5.0. 6. 2001

  • Han Z, Xiao S, Li W et al (2018) The identification of growth, immune related genes and marker discovery through transcriptome in the yellow drum (Nibea albiflora). Genes Genom 40:881–891

    Article  CAS  Google Scholar 

  • Jais AM, Hazliana H, Kamalludin MH, et al (2002) Effect of haruan (Channa striatus) fillet extract on blood glucose and cholelestrol concentration and differential white blood cells counts in rats and mice. In: Proceedings of the Regional Symposium on Environment and Natural Resources, Hotel Renaissance Kuala Lumpur, Malaysia

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Zhang R, Yi J et al (2019) Characterization and expression profiles of muscle transcriptome in Schizothoracine fish, Schizothorax prenanti. Gene 685:156–163

    Article  CAS  PubMed  Google Scholar 

  • Liu ZJ, Cordes JF (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1–37

    Article  CAS  Google Scholar 

  • Luikart G, England PR, Tallmon D et al (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra KD, Jana RK, Saha JN et al (2006) Lessons from the breeding program of rohu. Dev Aquat Anim Genet Improv Dissem Programs Curr Status Action Plans 73:34–40

    Google Scholar 

  • McKenna A, Hanna M, Banks E et al (2010) The Genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer E, Aglyamova GV, Wang S et al (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10:1–18

    Article  Google Scholar 

  • Nerlov C (2007) The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol 17:318–324

    Article  CAS  PubMed  Google Scholar 

  • Parchman TL, Geist KS, Grahnen JA et al (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:1–16

    Article  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Qi Z, Wu P, Zhang Q et al (2016) Transcriptome analysis of soiny mullet (Liza haematocheila) spleen in response to Streptococcus dysgalactiae. Fish Shellfish Immunol 49:194–204

    Article  CAS  PubMed  Google Scholar 

  • Rico C, Normandeau E, Dion-Côté A-M et al (2013) Combining next-generation sequencing and online databases for microsatellite development in non-model organisms. Sci Rep 3:3376

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson N, Baranski M, Mahapatra KD et al (2014) A linkage map of transcribed single nucleotide polymorphisms in rohu (Labeo rohita) and QTL associated with resistance to Aeromonas hydrophila. BMC Genomics 15:1–23

    Article  Google Scholar 

  • Sahoo L, Patel A, Sahu BP et al (2015) Preliminary genetic linkage map of Indian major carp, Labeo rohita (Hamilton 1822) based on microsatellite markers. J Genet 94:271–277

    Article  CAS  PubMed  Google Scholar 

  • Sahu BP, Patel A, Sahoo L et al (2012) Rapid and cost effective development of SSR markers using next generation sequencing in Indian major carp, Labeo rohita (Hamilton, 1822). Indian J Fish 59:21–24

    Google Scholar 

  • Sahu DK, Panda SP, Panda S et al (2013) Identification of reproduction-related genes and SSR-markers through expressed sequence tags analysis of a monsoon breeding carp rohu, Labeo rohita (Hamilton). Gene 524:1–14

    Article  CAS  PubMed  Google Scholar 

  • Salem M, Rexroad CE, Wang J et al (2010) Characterization of the rainbow trout transcriptome using Sanger and 454-pyrosequencing approaches. BMC Genomics 11:1–10

    Article  Google Scholar 

  • Salem M, Vallejo RL, Leeds TD et al (2012) RNA-Seq identifies SNP markers for growth traits in rainbow trout. PloS one 7(5):e36264

  • Tangphatsornruang S, Somta P, Uthaipaisanwong P et al (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biol 9:1–12

    Article  Google Scholar 

  • Tian J-J, Lu R-H, Ji H et al (2015) Comparative analysis of the hepatopancreas transcriptome of grass carp (Ctenopharyngodon idellus) fed with lard oil and fish oil diets. Gene 565:192–200

    Article  CAS  PubMed  Google Scholar 

  • Tsukada J, Yoshida Y, Kominato Y, Auron PE (2011) The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Cytokine 54:6–19

    Article  CAS  PubMed  Google Scholar 

  • Vera JC, Wheat CW, Fescemyer HW et al (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647

    Article  CAS  PubMed  Google Scholar 

  • Wagner EF (2001) AP-1–Introductory remarks. Oncogene 20:2334–2335

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Senalik D, McCown BH et al (2012) Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.). Theor Appl Genet 124:87–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, ICAR-Central Institute of Freshwater Aquaculture for providing the laboratory facilities. Acknowledgements are due to selective breeding team of ICAR-CIFA and Anand Agricultural University, Anand, India for providing samples and sequencing facility, respectively.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

PD and LS conceived the project; SPD, AB, SP, MM and GD collected the samples, isolated total RNA; SPD, AB and LS analyzed the data; MM, SP and GD performed the PCR; LS and PD wrote and reviewed the MS. All authors read and approved the manuscript.

Corresponding author

Correspondence to P. Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All handling of fish was carried out following the guidelines for control and supervision of experiments on animals by the Government of India and approved by Institutional Animal Ethics Committee (IAEC) of ICAR-CIFA.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, L., Das, S.P., Bit, A. et al. De novo assembly, transcriptome characterization and marker discovery in Indian major carp, Labeo rohita through pyrosequencing. Genetica 150, 59–66 (2022). https://doi.org/10.1007/s10709-021-00141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-021-00141-7

Keywords

Navigation