Skip to main content
Log in

Population demographic history and adaptability of the vulnerable Lolokou Sucker Frog

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Amphibians are experiencing worldwide declines due to increasing anthropogenetic disturbances. However, the genetic variability and hence adaptability are still unknown for most frogs. We integrated the mitochondrial (ND2 gene), nuclear (TYR gene) and major histocompatibility complex (MHC) loci, to clarify the demographic patterns and immune-gene diversity of the Lolokou Sucker Frog (Amolops loloensis). Demographic analysis of the ND2 and TYR genes suggested that the Lolokou Sucker Frog experienced a population expansion within the last 10,000 years. High MHC diversity was detected, which has likely resulted from positive selection, indicating the current diversity bodes well for the species’ adaptive potential to pathogenic challenges. These findings broaden our knowledge on the population history and evolution adaptation of the reclusive torrent frog, and conservation implications are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allentoft ME, Brien OJ (2010) Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2:47–71

    Article  Google Scholar 

  • Alton LA, Wilson RS, Franklin CE (2018) A small increase in UV-B increases the susceptibility of tadpoles to predation. Proc Biol Sci 278(1718):2575–2583

    Google Scholar 

  • Bai CM, Xuan L, Fisher MC, Garner TWJ, Li YM (2012) Global and endemic Asian lineages of the emerging pathogenic fungus Batrachochytrium dendrobatidis widely infect amphibians in China. Divers Distrib 18:307–318

    Article  Google Scholar 

  • Becker CG, Fonseca CR, Haddad CFB et al (2007) Habitat split and the global decline of amphibians. Science 318(5857):1775–1777

    Article  CAS  PubMed  Google Scholar 

  • Bélouard N, Petit EJ, Paillisson JM (2019) Variable effects of an invasive species on the reproduction and distribution of native species in pond networks. Freshw Biol 64(3):544–554

    Article  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  CAS  PubMed  Google Scholar 

  • Crespi EJ, Rissler LJ, Browne RA (2003) Testing Pleistocene refugia theory: phylogeographical analysis of Desmognathus wrighti, a high-elevation salamander in the southern Appalachians. Mol Ecol 12:969–984

    Article  CAS  PubMed  Google Scholar 

  • Cortázar-Chinarro M, Meyer-Lucht Y, Laurila A et al (2018) Signatures of historical selection on MHC reveal different selection patterns in the moor frog (Rana arvalis). Immunogenetics 70(7):477–484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:L418–L421

    Article  Google Scholar 

  • Fei L, Ye CY, Jiang JP (2012) Colored atlas of Chinese amphibians and their distributions. Sichuan Publishing House of Science & Technology, Beijing

    Google Scholar 

  • Figuet E, Romiguier J, Dutheil JY, Galtier N (2014) Mitochondrial DNA as a tool for reconstructing past life-history traits in mammals. J Evol Biol 27:899–910

    Article  CAS  PubMed  Google Scholar 

  • Fu YX (1997) Statistical test of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722

    Article  CAS  PubMed  Google Scholar 

  • Grant EH, Miller DA, Schmidt BR, Adams MJ, Amburgey SM, Chambert T, Cruickshank SS, Fisher RN, Green DM, Hossack BR (2016) Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Sci Rep 6:25625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harf R, Sommer S (2005) Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Mol Ecol 14:85–91

    Article  CAS  PubMed  Google Scholar 

  • Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    CAS  PubMed  Google Scholar 

  • Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:1–15

    Article  CAS  Google Scholar 

  • IUCN (2015) The IUCN Red List of Threatened Species. https://www.iucnredlist.org/. Accessed 1 Apr 2015

  • IUCN SSC Amphibian Specialist Group (2020) Amolops loloensis. The IUCN Red List of Threatened Species. 2020: T152339072A63852851. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T152339072A63852851.en

  • Jiang JP, Xie F, Zang CX, Cai L, Li C, Wang B (2016) Assessing the threat status of amphibians in China. Biodivers Sci 24:588–597

    Article  Google Scholar 

  • Li F, Shu YL, Wu HL (2012) Polymorphism of exon 2 of MHC Class II B gene in the Chinese concaveeared torrent frog (Odorrana tormota). Biodiv Sci 20(2):184–192

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Bi K, Fu J (2014) A phylogeographic evaluation of the Amolops mantzorum species group: cryptic species and plateau uplift. Mol Phylogenet Evol 73:40–52

    Article  PubMed  Google Scholar 

  • Ohta Y, Okamura K, Mckinney EC, Bartl S, Hashimoto K, Flajnik MF (2000) Primitive synteny of vertebrate major histocompatibility complex class I and class II genes. Proc Natl Acad Sci 97:4712–4717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5:201–214

    Article  CAS  PubMed  Google Scholar 

  • Parmar DR, Mitra S, Bhadouriya S et al (2017) Characterization of major histocompatibility complex class I, and class II DRB loci of captive and wild Indian leopards (Panthera pardus fusca). Genetica 145:541–558

    Article  CAS  PubMed  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752

    Article  CAS  PubMed  Google Scholar 

  • Polo-Cavia N, Burraco P, Gomez-Mestre I (2016) Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition. Aquat Toxicol 172:30–35

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v1.4. Encycl Atmos Sci 141:2297–2305

    Google Scholar 

  • Richmond JQ, Savage AE, Zamudio KR, Rosenblum EB (2009) Toward immunogenetic studies of amphibian chytridiomycosis: linking innate and acquired immunity. Bioscience 59:311–320

    Article  Google Scholar 

  • Savage AE, Sredl MJ, Zamudio KR (2011) Disease dynamics vary spatially and temporally in a North American amphibian. Biol Conserv 144:1910–1915

    Article  Google Scholar 

  • Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci 108:16705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savage AE, Zamudio KR (2016) Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations. Proc R Soc B Biol Sci 283:20153115

    Article  CAS  Google Scholar 

  • Scheele BC, Hunter DA, Brannelly LA et al (2017) Reservoir-host amplification of disease impact in an endangered amphibian. Conserv Biol 31(3):592–600

    Article  PubMed  Google Scholar 

  • Shafer ABA, Cullingham CI, Côté SD, Coltman DW (2010) Shafer ABA, Cullingham CI, Cote SD, Coltman DW. Of glaciers and refugia: a decade of study sheds new light on phylogeography of northwestern North America. Mol Ecol 19:4589–4621

    Article  PubMed  Google Scholar 

  • Shaffer HB, Gidiş M, Mccartneymelstad E, Neal KM, Oyamaguchi HM, Tellez M, Toffelmier EM (2015) Conservation genetics and genomics of amphibians and reptiles. Annu Rev Anim Biosci 3:113–138

    Article  CAS  PubMed  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Stoffel MA, Humble E, Acevedo-Whitehouse K et al (2019) Recent demographic histories and genetic diversity across pinnipeds are shaped by anthropogenic interactions and mediated by ecology and life-history. Nat Commun 9:4836

    Article  CAS  Google Scholar 

  • Subba B, Sen S, Ravikanth G et al (2018) Direct modelling of limited migration improves projected distributions of Himalayan amphibians under climate change. Biol Conserv 227:352–360

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura BK, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum. Mol Biol Evol 28:2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wong WS, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Zeng K, Fu YX, Shi S, Wu CI (2006) Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 174:1431–1439

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Zheng Y, Wei F, Bruford MW, Jia C (2011) Molecular evidence for Pleistocene refugia at the eastern edge of the Tibetan Plateau. Mol Ecol 20:3014–3026

    Article  PubMed  Google Scholar 

  • Zhang DC, Boufford DE, Ree RH et al (2010) The 29°N latitudinal line: an important division in the Hengduan Mountains, a biodiversity hotspot in southwest China. Nord J Bot 27(5):405–412

    Article  Google Scholar 

  • Zheng H, Mcaulay Powell C, An Z, Zhou J, Dong G (2000) Pliocene uplift of the northern Tibetan Plateau. Geology 28(8):715–718

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Resources Survey and Monitoring Project of Mabian Dafengding National Nature Reserve (201402024-274). Great thanks to passed away professor Zhihua Guo for his support for the work, and this work was specially in memory of him who contributed all his life in pursuing the truth. We also thank Dr. Elen Peres for providing valuable comments on data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nucleotide sequence accession numbers

Nucleotide sequences for the new identifications, characterizations, and sequences in this article have been deposited in GenBank. ND2: KY357476 - KY357479, TYR: KY357480 - KY357486, MHC II DRB exon 2: KY438976 - KY438987.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, M., Shafer, A.B.A., Hu, X. et al. Population demographic history and adaptability of the vulnerable Lolokou Sucker Frog. Genetica 148, 207–213 (2020). https://doi.org/10.1007/s10709-020-00105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-020-00105-3

Keywords

Navigation