Skip to main content
Log in

Comparative evolutionary genomics of Corynebacterium with special reference to codon and amino acid usage diversities

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akashi H, Gojobori T (2002) Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 99:3695–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Dilaimi A, Albersmeier A, Kalinowski J, Rückert C (2014) Complete genome sequence of Corynebacteriumvitaeruminis DSM 20294T, isolated from the cow rumen as a vitamin B producer. J Biotechnol 189:70–71

    Article  CAS  PubMed  Google Scholar 

  • Ben-Dov E, Ben Yosef DZ, Pavlov V, Kushmaro A (2009) Corynebacterium maris sp. nov., a marine bacterium isolated from the mucus of the coral Fungia granulosa. Int J Syst Evol Microbiol 59:2458–2463

    Article  CAS  PubMed  Google Scholar 

  • Bernard K (2012) The genus Corynebacterium and other medically relevant coryneform-like bacteria. J Clin Microbiol 50(10):3152–3158

    Article  PubMed  PubMed Central  Google Scholar 

  • Bomholt C, Glaub A, Gravermann K, Albersmeier A, Brinkrolf K, Rückert C, Tauch A (2013) Whole-genome sequence of the clinical strain Corynebacterium argentoratense DSM 44202, isolated from a human throat specimen. Genome Announ 1:e00793–e00713

    Article  Google Scholar 

  • Chen X, Zhang J (2013) Why are genes encoded on the lagging strand of the bacterial genome? Genome Biol Evol 5:2436–2439

    Article  PubMed  PubMed Central  Google Scholar 

  • Comeron JM, Aguadé M (1998) An evaluation of measures of synonymous codon usage bias. J Mol Evol 47:268–274

    Article  CAS  PubMed  Google Scholar 

  • dos Reis M, Savva R, Wernisch L (2004) Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res 32:5036–5044

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutta C, Paul S (2012) Microbial lifestyle and genome signatures. Curr Genom 13:153–162

    Article  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Gupta RS (2005) Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 55:2401–2412

    Article  CAS  PubMed  Google Scholar 

  • Gingold H, Pilpel Y (2011) Determinants of translation efficiency and accuracy. Mol Syst Biol 7:481

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldstein R (1991) Statistical computing software reviews. The American Statistician 45:305–311

    Article  Google Scholar 

  • Hall V, Matthew DC, Roger AH, Paul AL, Enevold F, Brian ID (2003) Corynebacterium atypicum sp. nov., from a human clinical source, does not contain corynomycolic acids. Int J Syst Evol Microbiol 53:1065–1068

    Article  CAS  PubMed  Google Scholar 

  • Ikemura T (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 151:389–409

    Article  CAS  PubMed  Google Scholar 

  • John FP (1999) Analysis of codon usage. Ph.D. Thesis: The University of Nottingham, UK

  • Jones D, Collins MD (1986) Irregular, nonsporing gram-positive rods. Bergey’s Man Syst Bacteriol 15:1261–1579

    Google Scholar 

  • Larkin MA, Blackshields G (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Laurence R, Didier H, Samuel IM (2011) Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 19(7):341–348

    Article  Google Scholar 

  • Lee S, Weon S, Lee S, Kang C (2010) Relative codon adaptation index, a sensitive measure of codon usage bias. Evol Bioinform Online 6:47–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Wu J, Yang H, Bao Q (2010) Codon usage patterns in Corynebacterium glutamicum: mutational bias, natural selection and amino acid conservation. Comp Funct Genom 2010:7

    Google Scholar 

  • Liu L, Wang L, Zhang Z, Wang S, Chen H (2012) Effect of codon message on xylanase thermal activity. J Biol Chem 287:27183–27188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marais G, Duret L (2001) Synonymous codon usage, accuracy of translation, and gene length in Caenorhabditiselegans. J Mol Evol 52:275–280

    Article  CAS  PubMed  Google Scholar 

  • McInerney JO (1998) Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc Natl Acad Sci 95:10698–10703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriyama EN, Powell JR (1997) Codon usage bias and tRNA abundance in Drosophila. J Mol Evol 45:514–523

    Article  CAS  PubMed  Google Scholar 

  • Nayak KC (2012) Comparative study on factors influencing the codon and amino acid usage in Lactobacillus sakei 23K and 13 other lactobacilli. Mol Biol Rep 39:535–545

    Article  CAS  PubMed  Google Scholar 

  • Nishio Y, Nakamura Y, Usuda Y, Sugimoto S, Matsui K, Kawarabayasi Y, Kikuchi H, Gojobori T, Ikeo K (2004) Evolutionary process of amino acid biosynthesis in Corynebacterium at the whole genome level. Mol Biol Evol 21(9):1683–1691

    Article  CAS  PubMed  Google Scholar 

  • Perrière G, Thioulouse J (2002) Use and misuse of correspondence analysis in codon usage studies. Nucleic Acids Res 30:4548–4555

    Article  PubMed  PubMed Central  Google Scholar 

  • Precup J, Parker J (1987) Missense misreading of asparagine codons as a function of codon identity and context. J Biol Chem 262:11351–11355

    CAS  PubMed  Google Scholar 

  • Roy A, Mukhopadhyay S, Sarkar I, Sen A (2015) Comparative investigation of the various determinants that influence the codon and amino acid usage patterns in the genus Bifidobacterium. World J Microbiol Biotechnol 31:959–981

    Article  CAS  PubMed  Google Scholar 

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder J, Maus I, Meyer K, Wördemann S, Blom J, Jaenicke S, Schneider J, Trost E, Tauch A (2012) Complete genome sequence, lifestyle, and multidrug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient. BMC Genom 13:141

    Article  Google Scholar 

  • Sen A, Sur S, Bothra AK, Benson DR, Normand P, Tisa LS (2008) The implication of life style on codon usage patterns and predicted highly expressed genes for three Frankia genomes. Antonie Van Leeuwenhoek 93:335–346

    Article  CAS  PubMed  Google Scholar 

  • Sen A, Daubin V, Abrouk D, Gifford I, Berry AM, Normand P (2014) Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 64:3821–3832

    Article  PubMed  Google Scholar 

  • Sharp PM, Li WH (1986) An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24:28–38

    Article  CAS  PubMed  Google Scholar 

  • Sharp PM, Li WH (1987) The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp PM, Stenico M, Peden JF, Lloyd AT (1993) Codon usage: mutational bias, translational selection, or both? Biochem Soc Trans 21:835–841

    Article  CAS  PubMed  Google Scholar 

  • Soares SC, Silva A, Trost E, Blom J, Ramos R, Carneiro A et al (2013) The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the Biovarovis and equi strains. PLoS One 8(1):e53818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tippelt A, Albersmeier A, Brinkrolf K, Rückert C, Fernández-Natal I, Soriano F, Tauch A (2014) Complete genome sequence of Corynebacterium ureicelerivorans DSM 45051, a lipophilic and urea-splitting isolate from the blood culture of a septicemia patient. Genome Announc 2:e1211–e1214

    Google Scholar 

  • Trost E, Blom J, SoaresSde C, Huang IH, Al-Dilaimi A, Schröder J, Jaenicke S, Dorella FA, Rocha FS, Miyoshi A, Azevedo V, Schneider MP, Silva A, Camello TC, Sabbadini PS, Santos CS, Santos LS, Hirata R Jr, Hall-Guaraldi AL, Efstratiou A, Schmitt MP, Ton-That H, Tauch A (2012) Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 194:3199–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ussery DW, Wassenaar TM, Borini S (2009) Computing for comparative microbial genomics. Comput Biol 8:37–42

    Article  Google Scholar 

  • Vesth T, Lagesen K, Acar Ö, Ussery D (2013) CMG-Biotools, a free workbench for basic comparative microbial genomics. PLoS One 8:e60120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87:23–29

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Culley DE, Zhang W (2005) Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and the implications for their metabolism. Microbiology 151:2175–2187

    Article  CAS  PubMed  Google Scholar 

  • Xia X (2013) DAMBE5: A comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    CAS  PubMed  Google Scholar 

  • Zhang J, Wang M, Liu W, Zhou J, Chen H, Ma L, Ding Y, Gu Y, Liu Y (2011) Analysis of codon usage and nucleotide composition bias in polioviruses. Virol J 8:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SP acknowledges DBT, Govt. of India for creation of Bioinformatics Infrastructure Facility at Vidyasagar University and DBT, Govt. of West Bengal for funding. IS and AR acknowledge UGC-BSR and CSIR respectively. AS is grateful to DBT, Govt. of India for creating Bioinformatics Facility at NBU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Sen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 592 KB)

Supplementary material 2 (PDF 10691 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Sarkar, I., Roy, A. et al. Comparative evolutionary genomics of Corynebacterium with special reference to codon and amino acid usage diversities. Genetica 146, 13–27 (2018). https://doi.org/10.1007/s10709-017-9986-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-017-9986-6

Keywords

Navigation