Skip to main content
Log in

The role of river drainages in shaping the genetic structure of capybara populations

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The capybara, Hydrochoerus hydrochaeris, is an herbivorous rodent widely distributed throughout most of South American wetlands that lives closely associated with aquatic environments. In this work, we studied the genetic structure of the capybara throughout part of its geographic range in Argentina using a DNA fragment of the mitochondrial control region. Haplotypes obtained were compared with those available for populations from Paraguay and Venezuela. We found 22 haplotypes in 303 individuals. Hierarchical AMOVAs were performed to evaluate the role of river drainages in shaping the genetic structure of capybara populations at the regional and basin scales. In addition, two landscape genetic models, isolation by distance and isolation by resistance, were used to test whether genetic distance was associated with Euclidean distance (i.e. isolation by distance) or river corridor distance (i.e. isolation by resistance) at the basin scale. At the regional scale, the results of the AMOVA grouping populations by mayor river basins showed significant differences between them. At the basin scale, we also found significant differences between sub-basins in Paraguay, together with a significant correlation between genetic and river corridor distance. For Argentina and Venezuela, results were not significant. These results suggest that in Paraguay, the current genetic structure of capybaras is associated with the lack of dispersion corridors through permanent rivers. In contrast, limited structuring in Argentina and Venezuela is likely the result of periodic flooding facilitating dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avise JC (2004) Molecular markers, natural history, and evolution. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Avise JC, Arnold J, Ball M, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraespecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522. doi:10.1146/annurev.es.18.110187.002421

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Banguera-Hinestroza E, Cárdenas H, Ruiz-García M, Marmontel M, Gaitán E, Vázquez RF, García-Vallejo F (2002) Molecular identification of Evolutionarily Significant Units in the Amazon River Dolphin Inia sp. (Cetacea: Iniidae). J Hered 93:312–322. doi:10.1093/jhered/93.5.312

    Article  CAS  PubMed  Google Scholar 

  • Barreto G, Quintana RD (2012) Foraging strategies and feeding habits of capybaras. In: Moreira JR, Ferraz KMPMB, Herrera EA, Macdonald DW (eds) Capybara: biology, use and conservation of an exceptional neotropical species. Springer, New York, pp 83–96

    Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. doi:10.1890/07-0986.1

    Article  PubMed  Google Scholar 

  • Borges-Landaez PA, Perdomo G, Herrera EA (2012) Estructura y diversidad genetica en poblaciones manejadas de Chiguire en los Llanos Venezolanos. Interciencia 37:227–233

    Google Scholar 

  • Brown BL, Swan CM (2010) Dendritic network structure constrains metacommunity properties in riverine ecosystems. J Anim Ecol 79:571–580. doi:10.1111/j.1365-2656.2010.01668.x

    Article  CAS  PubMed  Google Scholar 

  • Burridge CP, Craw D, Jack DC, King TM, Waters JM (2008) Does fish ecology predict dispersal across a river drainage divide? Evolution 62:1484–1499. doi:10.1111/j.1558-5646.2008.00377.x

    Article  PubMed  Google Scholar 

  • Campos-Krauer JM, Wisely SM (2010) Deforestation and cattle ranching drive rapid range expansion of capybara in the Gran Chaco ecosystem. Global Change Biol 17:206–218. doi:10.1111/j.1365-2486.2010.02193.x

    Article  Google Scholar 

  • Chaput-Bardy A, Fleurant C, Lemaire C, Secondi J (2009) Modelling the effect of in-stream and overland dispersal on gene flow in river networks. Ecol Model 220:3589–3598. doi:10.1016/j.ecolmodel.2009.06.027

    Article  Google Scholar 

  • Congdon ER (2007) Natal dispersal and new group formation in capybaras (Hydrochoerus hydrochaeris) in a seasonally flooded savanna of Venezuela Ph.D. Thesis dissertation, University of Missouri

  • Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Lemes Landeiro V, de Campos Pires, Telles M, Rangel TF, Bini LM (2013) Mantel test in population genetics. Genet Mol Biol 36:475–485. doi:10.1590/S1415-47572013000400002

    Article  PubMed Central  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Finn DS, Blouin MS, Lytle DA (2007) Population genetic structure reveals terrestrial affinities for a headwater stream insect. Freshw Biol 52:1881–1897. doi:10.1111/j.1365-2427.2007.01813.x

    Article  CAS  Google Scholar 

  • Flamenco EA (1998) Strong occurrence of El Nino events induce severe flooding in the Parana River. Bull Inst fr etudes andines 27:807–818

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Grant EHC, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett 10:165–175. doi:10.1111/j.1461-0248.2006.01007.x

    Article  Google Scholar 

  • Hanfling B, Brandl R (1998) Genetic differentiation of the bullhead Cottus gobio L. across watersheds in Central Europe: evidence for two taxa. Heredity 80:110–117. doi:10.1046/j.1365-2540.1998.00279.x

    Article  Google Scholar 

  • Herrera EA (1992) Growth and dispersal of capybaras (Hydrochaeris hydrochaeris) in the Llanos of Venezuela. J Zool Lond 228:307–316. doi:10.1111/j.1469-7998.1992.tb04610.x

    Article  Google Scholar 

  • Herrera EA, MacDonald DW (1989) Resource utilization and territoriality in group-living capybaras (Hydrochoerus hydrochaeris). J Anim Ecol 58:667–679. doi:10.2307/4855

    Article  Google Scholar 

  • Herrera EA, Salas V, Congdon ER et al (2011) Capybara social structure and dispersal patterns: variations on a theme. J Mammal 92:12–20. doi:10.1644/09-MAMM-S-420.1

    Article  Google Scholar 

  • Hoffman JI, Matson CW, Amos W et al (2006) Deep genetic subdivision within a continuously distributed and highly vagile marine mammal, the Steller’s sea lion (Eumetopias jubatus). Mol Ecol 15:2821–2832. doi:10.1111/j.1365-294X.2006.02991.x

    Article  CAS  PubMed  Google Scholar 

  • Hughes JM, Mather PB, Sheldon AL, Allendorf FW (1999) Genetic structure of the stonefly, Yoraperla brevis, populations: the extent of gene flow among adjacent montane streams. Freshw Biol 41:63–72

    Article  Google Scholar 

  • Hughes JM, Schmidt DJ, Finn DS (2009) Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. Bioscience 59:573–583. doi:10.1525/bio.2009.59.7.8

    Article  Google Scholar 

  • Hurwood DA, Hughes JM (1998) Phylogeography of the freshwater fish, Mogurnda adspersa, in streams of northeastern Queensland, Australia: evidence for altered drainage patterns. Mol Ecol 7:1507–1517. doi:10.1046/j.1365-294x.1998.00469.x

    Article  CAS  PubMed  Google Scholar 

  • Jackson JK, Resh VH (1992) Variation in genetic structure among populations of the caddisfly Helicopsyche horealis from three streams in northern California, USA. Freshw Biol 27:29–42. doi:10.1111/j.1365-2427.1992.tb00520.x

    Article  Google Scholar 

  • Jalil MF, Cable J, Sinyor J, Lackman-Ancrenaz I, Ancrenaz M, Bruford MW, Goossens B (2008) Riverine effects on mitochondrial structure of Bornean orang-utans (Pongo pygmaeus) at two spatial scales. Mol Ecol 17:2898–2909. doi:10.1111/j.1365-294X.2008.03793.x

    Article  CAS  PubMed  Google Scholar 

  • Kandus P, Malvarez AI (2002) Las islas del Bajo Delta del Parana. In: Borthagaray JM (ed) El Rio de la Plata como territorio. Ediciones FADU, FURBAN e Infinito, Buenos Aires, pp 77–94

    Google Scholar 

  • Landeiro VL, Magnusson WE, Melo AS, Espírito-Santo HMV, Bini LM (2011) Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshw Biol 56:1184–1192. doi:10.1111/j.1365-2427.2010.02563.x

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lucchini V, Galov A, Randi E (2004) Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines. Mol Ecol 13:523–536. doi:10.1046/j.1365-294X.2004.02077.x

    Article  CAS  PubMed  Google Scholar 

  • Marín JC, Spotorno AE, González BA, Bonacic C, Wheeler JC, Casey CS, Bruford MW, Palma RE, Poulin E (2008) Mitochondrial DNA variation and systematics of the guanaco (Lama Guanicoe, Artiodactyla: Camelidae). J Mammal 89:269–281. doi:10.1644/06-MAMM-A-385R.1

    Article  Google Scholar 

  • McGlashan DJ, Hughes JM (2002) Extensive genetic divergence among populations of the Australian freshwater fish, Pseudomugil signifier (Pseudomugilidae), at different hierarchical scales. Mar Freshw Res 53:897–907. doi:10.1071/MF01107

    Article  Google Scholar 

  • Meffe GK, Vrijenhoek RC (1988) Conservation genetics in the management of desert fishes. Conserv Biol 2:157–169. doi:10.1111/j.1523-1739.1988.tb00167.x

    Article  Google Scholar 

  • Mones A, Ojasti J (1986) Hydrochoerus hydrochaeris. Mamm Species 264:1–7

    Article  Google Scholar 

  • Moreira JR, Álvarez MR, Tarifa T, Pacheco V, Taber A, Tirira DG, Herrera EA, Ferraz KMPMB, Aldana-Domínguez J, Macdonald DW (2012) Taxonomy, natural history and distribution of the Capybara. In: Moreira JR, Ferraz KB, Herrera EA, Macdonald DW (eds) Capybara: biology, use and conservation of an exceptional Neotropical species. Springer, New York, pp 83–96

    Google Scholar 

  • Moritz C (1994) Defining evolutionary significant units for conservation. Trends Ecol Evol 9:373–375. doi:10.1016/0169-5347(94)90057-4

    Article  CAS  PubMed  Google Scholar 

  • Piaggio AJ, Perkins SL (2005) Molecular phylogeny of North American long-eared bats (Vespertilionidae: Corynorhinus); inter- and intraspeciific relationships inferred from mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 37:762–775. doi:10.1016/j.ympev.2005.03.029

    Article  CAS  PubMed  Google Scholar 

  • Pickles RSA, Groombridge JJ, Zambrana Rojas VD, Van Damme P, Gotelli D, Ariani CV, Jordan WC (2012) Genetic diversity and population structure in the endangered giant otter, Pteronura brasiliensis. Conserv Genet 13:235–245. doi:10.1007/s10592-011-0279-9

    Article  Google Scholar 

  • Popolizio E (2006) El Parana, un rio y su historia geomorfologica. Rev Geog 140:79–90

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817

    Article  CAS  PubMed  Google Scholar 

  • Pujolar JM, Lucarda AN, Simonato M, Patarnello T (2011) Restricted gene flow at the micro- and macrogeographical scale in marble trout based on mtDNA and microsatellite polymorphism. Front Zool 8:7. doi:10.1186/1742-9994-8-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quintana RD (1999) Relationship between a wetland landscape structure and wildlife: the capybara (Hydrochaeris hydrochaeris) as a study case. In: Malvarez AI (ed) Topicos sobre humedales subtropicales y templados de Sudamerica. ORCyT-MAB/UNESCO, Montevideo, pp 185–204

    Google Scholar 

  • Quintana RD, Bo R, Kalesnik F (2002) La vegetacion y la fauna silvestre de la porcion terminal de la cuenca del Plata. Consideraciones biogeograficas y ecologicas. In: Bortharagay JM (ed) El Rio de la Plata como territorio. Ediciones FADU, FURBAN e Infinito, Buenos Aires, pp 99–124

    Google Scholar 

  • Reed JZ, Tollit DJ, Thompson PM, Amos W (1997) Molecular scatology: the use of molecular genetic analysis to assign species, sex and individual identity to seal faeces. Mol Ecol 6:225–234. doi:10.1046/j.1365-294X.1997.00175.x

    Article  CAS  PubMed  Google Scholar 

  • Salas V (1999) Social organization of capybaras in the Venezuelan Llanos. Ph.D. Thesis dissertation, Cambridge University

  • Seymour M, Räsänen K, Holderegger R, Kristjánsson BK (2013) Connectivity in a pond system influences migration and genetic structure in threespine stickleback. Ecol Evol 3:492–502. doi:10.1002/ece3.476

    Article  PubMed Central  PubMed  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430. doi:10.1146/annurev.es.16.110185.002141

    Article  Google Scholar 

  • ter Braak CJF (1988) Partial canonical correspondence analysis. In: Block HH (ed) Classification and related methods of data analysis. North Holland Press, Amsterdam, pp 551–558

    Google Scholar 

  • Torroni A, Huoponen K, Francalacci P, Petrozzi M, Morelli L, Scozzari R, Obinu D, Savontaus ML, Wallace DC (1996) Classification of European mtDNAs from an analysis of three European populations. Genetics 144:1835–1850

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trujillo RG, Loughlin TR, Gemmell NJ, Patton JC, Bickham JW (2004) Variation in microsatellites and mtDNA across the range of the Steller sea lion, Eumetopias jubatus. J Mammal 85:338–346. doi:10.1644/1545-1542(2004)085<0338:VIMAMA>2.0.CO;2

    Article  Google Scholar 

  • Tunez JI, Cappozzo HL, Nardelli M, Cassini MH (2010) Population genetic structure and historical population dynamics of the South American sea lion, Otaria flavescens, in north-central Patagonia. Genetica 138:831–841. doi:10.1007/s10709-010-9466-8

    Article  PubMed  Google Scholar 

  • Tunez JI, Cappozzo HL, Paves H, Albareda DA, Cassini MH (2013) The role of Pleistocene glaciations in shaping the genetic structure of South American fur seals (Arctocephalus australis). NZ J Mar Freshw Res 47:139–152. doi:10.1080/00288330.2012.753463

    Article  Google Scholar 

  • Vignieri SN (2005) Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus). Mol Ecol 14:1925–1937. doi:10.1111/j.1365-294X.2005.02568.x

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC, Brown MD, Lott MT (1999) Mitochondrial DNA variation in human evolution and disease. Gene 238:211–230. doi:10.1016/S0378-1119(99)00295-4

    Article  CAS  PubMed  Google Scholar 

  • Waters JM, Craw D, Youngson JH, Wallis GP (2001) Genes meet geology: fish phylogeographic pattern reflects ancient, rather than modern, drainage connections. Evolution 55:1844–1851. doi:10.1111/j.0014-3820.2001.tb00833.x

    Article  CAS  PubMed  Google Scholar 

  • Wishart MJ, Hughes JM (2003) Genetic population structure of the net-winged midge, Elporia barnardi (Diptera: Blephariceridae) in streams of the southwestern Cape, South Africa: implications for dispersal. Freshw Biol 48:28–38. doi:10.1046/j.1365-2427.2003.00958.x

    Article  CAS  Google Scholar 

  • Wright S (1931) Evolution of Mendelian populations. Genetics 16:97–159

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ayelen Eberhardt, Natalia Fracassi, Yanina Sica, Emiliano Villegas and all the local people who assisted us during sample collection. We also thank the Associate Editor and the two anonymous reviewers of the manuscript for their valuable comments and suggestions. This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 11420100100189 to J.I.T); the Dirección de Fauna de la Secretaria de Agricultura y Desarrollo Sustentable; the Departamento de Ciencias Básicas de la Universidad Nacional de Luján; and the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (PhD Grant to M.S.B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Ignacio Túnez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrne, M.S., Quintana, R.D., Bolkovic, M.L. et al. The role of river drainages in shaping the genetic structure of capybara populations. Genetica 143, 645–656 (2015). https://doi.org/10.1007/s10709-015-9862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-015-9862-1

Keywords

Navigation