Skip to main content
Log in

Fine-scale genetic structure of Nothofagus pumilio (lenga) at contrasting elevations of the altitudinal gradient

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Montane forests provide the natural framework to test for various ecological settings at distinct elevations as they may affect population demography, which in turn will affect the spatial genetic structure (SGS). We analyzed the fine-scale SGS of Nothofagus pumilio, which dominates mountain areas of Patagonia, in three pairs of sites at contrasting elevations (low- vs. high-elevation). Within a total area of 1 ha fresh leaf tissue from 90 individuals was collected at each of the six studied stands following a spatially explicit sampling design. Population genetic diversity parameters were analyzed for all sampled individuals using five polymorphic isozyme loci, and a subset of 50 individuals per stand were also screened for five microsatellite loci. The SGS was assessed on 50 individuals/stand, using the combined datasets of isozymes and microsatellites. Most low-elevation stands consisted of older individuals with complex age structures and genetically diverse plots. In contrast, high-elevation stands and one post-fire low-elevation population yielded even-aged structures with evidence of growth suppression, and were genetically homogeneous. All stands yielded significant SGS. Similarly to mature stands of the non-sprouter congener Nothofagus dombeyi, multi-age low-altitude N. pumilio yielded significant SGS weakened by competing species of the understory and the formation of seedling banks. Alike the sprouter Nothofagus antarctica, high-altitude stands produced significant SGS as a consequence of occasional seedling establishment reinforced by vegetative spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnaud-Haond S, Belkhir K (2007) GenClone 1.0: a new program to analyze genetics data on clonal organisms. Mol Ecol Notes 7:15–17

    CAS  Google Scholar 

  • Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139

    CAS  Google Scholar 

  • Asuka Y, Tomaru N, Nisimura N, Tsumura Y, Yamamoto S (2004) Heterogeneous genetic structure in a Fagus crenata population in an old-growth beech forest revealed by microsatellite markers. Mol Ecol 13:1241–1250

    CAS  Google Scholar 

  • Azpilicueta MM, Caron H, Bodénès C, Gallo LA (2004) SSR markers for analyzing South American Nothofagus species. Silvae Genet 53:240–243

    Google Scholar 

  • Barrera MD, Frangi JL, Richter LL, Perdomo MH, Pinedo LB (2000) Structural and functional changes in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina. J Veg Sci 11:179–188

    Google Scholar 

  • Berg EE, Hamrigk JL (1995) Fine-scale genetic structure of a Turkey oak forest. Evolution 49:110–120

    Google Scholar 

  • Chung MY, Epperson BK, Chung MG (2003) Genetic structure of age classes in Camellia japonica (Theaceae). Evolution 57:62–73

    Google Scholar 

  • Conkle MT, Hodgskiss PD, Nunnally LB, Hunter SC (1982) Starch gel electrophoresis of conifer seeds: a laboratory manual. General Technical Report PSW-64. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley

  • Cuevas JG (2000) Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. J Ecol 88:840–855

    Google Scholar 

  • Cuevas JG (2002) Episodic regeneration at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. J Ecol 90:52–60

    Google Scholar 

  • Cuevas JG, Arroyo MTK (1999) Ausencia de banco de semillas persistente en Nothofagus pumilio (Fagaceae) en Tierra del Fuego, Chile. Rev Chil Hist Nat 72:73–82

    Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51:723–734

    Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256

    CAS  Google Scholar 

  • Ellstrand NC, Rose ML (1987) Patterns of genotypic diversity in clonal plant species. Am J Bot 74:123–131

    Google Scholar 

  • Epperson BK (2000) Spatial genetic structure and non-equilibrium demographics within plant populations. Plant Species Biol 15:269–279

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (v 2.9.3). Available from: http://www.unil.ch/izea/softwares/fstat.html

  • Hamrick JL, Nason JD (1996) Consequences of dispersal in plants. In: Rhodes OE, Chesser RK, Smith MH (eds) Population dynamics in ecological space and time. University of Chicago Press, Chicago, pp 203–236

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Google Scholar 

  • Heinemann K (2007) Aspectos espaciales y temporales del establecimiento de Nothofagus pumilio en claros de bosques maduros en los extremos de un gradiente ambiental en el Noroeste de la Patagonia. PhD Thesis, Universidad Nacional del Comahue, Bariloche, Argentina

  • Heinemann K, Kitzberger T, Veblen TT (2000) Influences of gap microheterogeneity on the regeneration of Nothofagus pumilio in a xeric old-growth forest of northwestern Patagonia, Argentina. Can J Forest Res 30:25–31

    Google Scholar 

  • Hirao AS, Kudo G (2004) Landscape genetics of alpine-snowbed plants: comparisons along geographic and snowmelt gradients. Heredity 93:290–298

    CAS  Google Scholar 

  • Howorth R, Truscott AM (2007) Potential for lenga regeneration in Chilean Patagonia following historic destruction by fire. Chloris Chilensis. 10(2). http://www.chlorischile.cl/richlenga/Howorth_text.htm

  • Jones RC, Vaillancourt RE, Jordan GJ (2004) Microsatellites for use in Nothofagus cunninghamii (Nothofagaceae) and related species. Mol Ecol Notes 4:14–16

    CAS  Google Scholar 

  • Jump A, Peñuelas J (2007) Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Mol Ecol 16:925–936

    CAS  Google Scholar 

  • Kabeya D (2010) Differentiating between the adverse effects of nutrient-limitation and direct-cold-limitation on tree growth at high altitudes. Arct Antarct Alp Res 42(4):430–437

    Google Scholar 

  • Kalisz S, Nason JD, Hanzawa FM, Tonsor SJ (2001) Spatial population genetic structure in Trillium gradiflorum: the roles of dispersal, mating, history, and selection. Evolution 55(8):1560–1568

    CAS  Google Scholar 

  • Körner Ch (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277

    Google Scholar 

  • Loiselle BA, Sork VL, Nason JD, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Google Scholar 

  • Marchelli P, Caron H, Azpilicueta MM, Gallo LA (2008) Primer Note: a new set of highly polymorphic nuclear microsatellite markers for Nothofagus nervosa and related South American species. Silvae Genet 57:83–85

    Google Scholar 

  • Martínez Pastur G, Pinedo L, Fernandez C (1997) Germinación de semillas y sistema de propagación clonal en bosques de Tierra del Fuego. In: Asociación Forestal Argentina (ed) Actas II Congreso Forestal Argentino y Latinoamericano. Tomo Bosques nativos y protección ambiental. Posadas, Argentina, pp 141–147

  • Mathiasen P (2010) Variación y estructura genética en Nothofagus pumilio (Poepp. et Endle.) Krasser “lenga” a lo largo de diferentes gradientes ambientales. PhD Thesis, Universidad Nacional del Comahue, Bariloche, Rio Negro, Argentina, p 252

  • Mathiasen P, Premoli AC (2010) Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Mol Ecol 19:371–385

    CAS  Google Scholar 

  • Mitton JB, Linhart YB, Sturgeon KB, Hamrick JL (1979) Allozyme polymorphisms detected in mature needle of ponderosa pine. J Hered 70:86–89

    CAS  Google Scholar 

  • Premoli AC (1996) Allozyme polymorphisms, outcrossing rates, and hybridization of South American Nothofagus. Genetica 97:55–64

    CAS  Google Scholar 

  • Premoli AC (1998) Use of genetic markers to conserve endangered species and to design protected areas for more widespread species. In: International Foundation for Science (ed) Proceedings of an international workshop on recent advances in biotechnology for tree conservation and management. Universidade Federal de Santa Catarina, Santa Catarina, Brazil, pp 157–171

  • Premoli AC (2003) Isozyme polymorphisms provide evidence of clinal variation with elevation in Nothofagus pumilio. J Hered 94:218–226

    CAS  Google Scholar 

  • Premoli AC (2004) Variación en Nothofagus pumilio (Poepp. et Endl.) Krasser (Lenga). In: Donoso C, Premoli AC, Gallo L, Ipinza R (eds) Variación intraespecífica en las especies arbóreas de los bosques templados de Chile y Argentina. Editorial Universitaria, Santiago de Chile, pp 145–166

    Google Scholar 

  • Premoli AC, Brewer C (2007) Environmental vs. genetically driven variation in ecophysiological traits of Nothofagus pumilio from contrasting elevations. Aust J Bot 55:585–591

    Google Scholar 

  • Premoli AC, Kitzberger T (2005) Regeneration mode affects spatial genetic structure of Nothofagus dombeyi forests. Mol Ecol 14:2319–2329

    CAS  Google Scholar 

  • Premoli AC, Steinke L (2008) Genetics of sprouting: effects of long-term persistence in fire-prone ecosystems. Mol Ecol 17:3827–3835

    Google Scholar 

  • Premoli AC, Raffaele E, Mathiasen P (2007) Morphological and phenological differences in Nothofagus pumilio from contrasting elevations. Austral Ecol 32:515–523

    Google Scholar 

  • Ranker TA, Haufler CH, Soltis PS, Soltis DE (1989) Genetic evidence for allopolyploidy in the neotropical fern Hemionitis (Adiantaceae) and the reconstruction of an ancestral genome. Syst Bot 14:439–447

    Google Scholar 

  • Rebertus AJ, Veblen TT (1993) Structure and tree-fall gap dynamics of old-growth Nothofagus forests on Tierra del Fuego, Argentina. J Veg Sci 4:641–654

    Google Scholar 

  • Riveros M, Parades MA, Rosas MT, Cardenas E, Armesto JJ, Arroyo MTK, Palma B (1995) Reproductive biology in species of the genus Nothofagus. Environ Exp Bot 35:519–524

    Google Scholar 

  • Rusch VE (1987) Estudio sobre la regeneración de la Lenga en la cuenca del Rio Manso Superior, Rio Negro. Report to Consejo Nacional de investigaciones Científicas y técnicas, Buenos Aires, Argentina

  • Veblen TT (1985) Forest development in tree-fall gaps in the temperate rain forests of Chile. Natl Geogr Res 1:162–183

    Google Scholar 

  • Veblen TT, Kitzberger T, Burns BR, Rebertus AJ (1996) Perturbaciones y regeneración en bosques andinos del sur de Chile y Argentina. In: Armesto JJ, Arroyo MTK, Villagrán C (eds) Ecología del bosque nativo de Chile. Universidad de Chile Press, Santiago, pp 169–198

    Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  Google Scholar 

  • Yamagishi H, Tomimatsu H, Ohara M (2007) Fine-scale spatial genetic structure within continuous and fragmented populations of Trillium camschatcense. J Hered 98:367–372

    CAS  Google Scholar 

  • Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1999) POPGENE 1.32, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton. http://www.ualberta.ca/~fyeh/download.htm

Download references

Acknowledgments

We are most grateful to M.C. Acosta, M. Arbetman, G.A. Carrizo, M. Fernandez, N. Mathiasen, P. Quiroga, A. Rovere, and C. Souto for assistance during fieldwork and/or in the laboratory. We thank two anonymous reviewers for valuable suggestions that improved our manuscript. Administración de Parques Nacionales allowed plant collection within protected areas. This work was supported by Universidad Nacional del Comahue (04/B157). P.M. and A.C.P. are members of the National Research Council of Argentina (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea C. Premoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathiasen, P., Premoli, A.C. Fine-scale genetic structure of Nothofagus pumilio (lenga) at contrasting elevations of the altitudinal gradient. Genetica 141, 95–105 (2013). https://doi.org/10.1007/s10709-013-9709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-013-9709-6

Keywords

Navigation