Skip to main content
Log in

Repetitive DNA sequences include retrotransposons in genomes of the Glomeromycota

  • Research Article
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Twenty-five repetitive elements are first described in the genomes of the arbuscular mycorrhizal (AM) fungi Gigaspora margarita, Gig. rosea and Glomus mosseae. Nineteen repetitive DNA sequences isolated by genomic library screening and four by self-priming PCR had no homology to known DNA sequences, except for two Gig. margarita sequences and one Gig. rosea sequence which showed amino acid similarity to retrotransposons. Part of the Gig. rosea sequence was also similar to a DNA transposon. Two other retrotransposon sequences were isolated using PCR targeting of reverse transcriptase and ribonuclease H domains. Evidence is provided for three gypsy-like LTR retrotransposon and two non-LTR retrotransposon sequences in the AM fungal genomes. Four contain stop codons indicating that they cannot be active. Expression of three retrotransposons was not detected in germinating spores or intraradical hyphae of Gig. margarita. Southern blot analyses indicated that these three sequences are dispersed in the genome and that two are methylated. Sequence analysis of different GmarLTR1 copies showed they have undergone mutations by transitions, which may have been induced by cytosine methylation. Transposable elements may have played a major role in shaping genome structure and size during evolution of the Glomeromycota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM fungus:

Arbuscular mycorrhizal fungus

EDTA:

Ethylenediaminetetraacetic acid

EN:

Endonuclease

GSP-PCR:

Genomic self-priming polymerase chain reaction

INT:

Integrase

LSU:

Large subunit

LTR:

Long terminal repeat

M-MLV:

Moloney murine leukemia virus

rDNA:

Ribosomal DNA

RNase H:

Ribonuclease H

RT:

Reverse transcriptase

SDS:

Sodium dodecyl sulfate

SSC:

Sodium salt citrate

SSU:

Small subunit

TAE:

Tris/acetic acid/EDTA

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Attard A, Gout L, Ross S, Parlange F, Cattolico L, Balesdent MH, Rouxel T (2005) Truncated and RIP-degenerated copies of the LTR-retrotransposon Pholy are clustered in a pericentromeric region of the Leptosphaeria maculans genome. Fungal Genet Biol 42:30–41

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta JM, Santiago N (2003) Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1–11

    Article  PubMed  CAS  Google Scholar 

  • Colot V, Rossignol JL (1999) Eukaryotic DNA methylation as an evolutionary device. BioEssays 21:402–411

    Article  PubMed  CAS  Google Scholar 

  • Daboussi MJ, Capy P (2003) Transposable elements in filamentous fungi. Ann Rev Microbiol 57:275–299

    Article  CAS  Google Scholar 

  • Ferrol N, Azcon-Aguilar C, Bago B, Franken P, Gollotte A, Gonzalez-Guerrero M, Harrier LA, Lanfranco L, Van Tuinen D, Gianinazzi-Pearson V (2004) Genomics of arbuscular mycorrhizal fungi. In: Aroraand DK, Khachatourians GG (eds) Applied mycology and biotechnology: fungal genomics. Elsevier, pp 379–403

  • Fierro F, Martin JF (1999) Molecular mechanisms of chromosomal rearrangement in fungi. Crit Rev Microbiol 25:1–17

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Pearce SR, Heslop-Harrison P, Kumar A (1997) The evolution of Ty1-copia group retrotransposons in eukaryote genomes. Genetica 100:185–195

    Article  PubMed  CAS  Google Scholar 

  • Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20:417–423

    Article  PubMed  CAS  Google Scholar 

  • Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Le Thierry D’Ennequin M, Peek AS, Sawkins MC (2000) Maize as a model for the evolution of plant nuclear genomes. Proc Natl Acad Sci USA 97:7008–7015

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Azcon C, Becard G, Bonfante P, Ferrol N, Franken P, Gollotte A, Harrier LA, Lanfranco L, van Tuinen D (2004) Structural and functional genomics of symbiotic arbuscular mycorrhizal fungi. In: Tkaczand JS, Lange LE (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Kluwer, New York, pp 405–424

    Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Article  Google Scholar 

  • Graia F, Lespinet O, Rimbault B, Dequard-Chablat M, Coppin E, Picard M (2001) Genome quality control: RIP (repeat-induced point mutation) comes to Podospora. Mol Microbiol 40:586–595

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS (2000) Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 12:617–635

    Article  PubMed  CAS  Google Scholar 

  • Hijri M, Sanders IR (2004) The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has small genome size in the lower limit of eukaryotes. Fungal Genet Biol 41:253–261

    Article  PubMed  CAS  Google Scholar 

  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163

    Article  PubMed  CAS  Google Scholar 

  • Hood ME, Katawczik M, Giraud T (2005) Repeat-induced point mutation and the population structure of transposable elements in Microbotryum violaceum. Genetics 170:1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Hosny M, De Barros JPP, Gianinazzi-Pearson V, Dulieu H (1997) Base composition of DNA from Glomalean fungi: high amounts of methylated cytosine. Fungal Genet Biol 22:103–111

    Article  PubMed  CAS  Google Scholar 

  • Hosny M, Gianinazzi-Pearson V, Dulieu H (1998) Nuclear DNA content of 11 fungal species in Glomales. Genome 41:422–428

    Article  CAS  Google Scholar 

  • Hosny M, Hijri M, Passerieux E, Dulieu H 1999a rDNA units are highly polymorphic in Scutellospora castanea (Glomales, Zygomycetes). Gene 226:61–71

    Article  CAS  Google Scholar 

  • Hosny M, Van Tuinen D, Jacquin F, Fuller P, Zhao B, Gianinazzi-Pearson V, Franken P 1999b Arbuscular mycorrhizal fungi and bacteria: how to construct prokaryotic DNA-free genomic libraries from the Glomales. FEMS Microbiol Lett 170:425–430

    Article  CAS  Google Scholar 

  • Hsieh J, Fire A (2000) Recognition and silencing of repeated DNA. Annu Rev Genet 34:187–204

    Article  PubMed  CAS  Google Scholar 

  • Hua-Van A, Hericourt F, Capy P, Daboussi MJ, Langin T (1998) Three highly divergent subfamilies of the impala transposable element coexist in the genome of the fungus Fusarium oxysporum. Mol Gen Genet 259:354–362

    Article  PubMed  CAS  Google Scholar 

  • Jiang RH, Dawe AL, Weide R, van Staveren M, Peters S, Nuss DL, Govers F (2005) Elicitin genes in Phytophthora infestans are clustered and interspersed with various transposon-like elements. Mol Genet Genomics 273:20–32

    Article  PubMed  CAS  Google Scholar 

  • Judelson HS (2002) Sequence variation and genomic amplification of a family of gypsy-like elements in the Oomycete genus Phytophthora. Mol Biol Evol 19:1313–1322

    PubMed  CAS  Google Scholar 

  • Judelson HS, Randall TA (1998) Families of repeated DNA in the oomycete Phytophthora infestans and their distribution within the genus. Genome 41:605–615

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Kempken F, Kuck U (1998) Transposons in filamentous fungi-facts and perspectives. BioEssays 20:652–659

    Article  PubMed  CAS  Google Scholar 

  • Kordis D (2005) A genomic perspective on the chromodomain-containing retrotransposons: chromoviruses. Gene 347:161–173

    Article  PubMed  CAS  Google Scholar 

  • Kricker MC, Drake JW, Radman M (1992) Duplication-targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes. Proc Natl Acad Sci USA 89:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745–748

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134

    Article  PubMed  CAS  Google Scholar 

  • Kuszala C, Gianinazzi S, Gianinazzi-Pearson V (2001) Storage conditions for the long-term survival of AM fungal propagules in wet sieved soil fractions. Symbiosis 30:287–299

    Google Scholar 

  • Lammers P, Tuskan GA, Difazio SP, Podila GK, Martin F (2004) Mycorrhizal symbionts of Populus to be sequenced by the United States Department of Energy’s Joint Genome Institute. Mycorrhiza 14:63–64

    Article  PubMed  CAS  Google Scholar 

  • Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67

    Article  PubMed  CAS  Google Scholar 

  • Latijnhouwers M, de Wit PJGM, Govers F (2003) Oomycetes and fungi: similar weaponary to attack plants. Trends Microbiol 11:462–469

    Article  PubMed  CAS  Google Scholar 

  • LloydMacgilp SA, Chambers SM, Dodd JC, Fitter AH, Walker C, Young JPW (1996) Diversity of the ribosomal internal transcribed spacers within and among isolates of Glomus mosseae and related mycorrhizal fungi. New Phytol 133:103–111

    Article  CAS  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-search: protein domain annotations on the fly. Nucleic Acids Res 32:327–331

    Google Scholar 

  • Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • Nakayashiki H, Nishimoto N, Ikeda K, Tosa Y, Mayama S (1999) Degenerate MAGGY elements in a subgroup of Pyricularia grisea: a possible example of successful capture of a genetic invader by a fungal genome. Mol Gen Genet 261:958–966

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Nouzova M, Macas J (2001) Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome 716–728

  • Neuveglise C, Sarfati J, Latge JP, Paris S (1996) Afut1, a retrotransposable-like element from Aspergillus fumigatus. Nucleic Acids Res 24:1428–1434

    Article  PubMed  CAS  Google Scholar 

  • Neuveglise C, Feldmann H, Bon E, Gaillarfin C, Casaregola S (2002) Genomic evolution of the long terminal repeat retrotransposons in hemiascomycetous yeasts. Genome Res 12:930–943

    Article  PubMed  CAS  Google Scholar 

  • Nielsen ML, Hermanson TD, Aleksenko A (2001) A family of DNA repeats in Aspergillus nidulans has assimilated degenerated retrotransposons. Mol Genet Genomics 265:883–887

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE (2005) Genetic processes in arbuscular mycorrhizal fungi. FEMS Microbiol Lett 251:185–192

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737

    Article  PubMed  CAS  Google Scholar 

  • Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Gen Genomics 271:91–97

    Article  CAS  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, Clapp JP, Robinson L, Dodd JC (2005) Studies on the diversity of the distinct phylogenetic lineage encompassing Glomus claroideum and Glomus etunicatum. Mycorrhiza 15:33–46

    Article  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. CSHL Press, New York

    Google Scholar 

  • San Miguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  CAS  Google Scholar 

  • Schussler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Selker EU, Stevens JN (1985) DNA methylation at asymetric sites is associated with numerous transition mutations. Proc Natl Acad Sci USA 82:8114–8118

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Taylor EJA, Konstantinova P, Leigh F, Bates JA, Lee D (2004) Gypsy-like retrotransposons in Pyrenophora: an abundant and informative class of molecular markers. Genome 47:519–525

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment though sequence weighing, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA-Presse, Paris, pp 217–221

    Google Scholar 

  • van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, Academic Press (eds) San Diego, pp 315–322

  • Wostemeyer J, Kreibich A (2002) Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution. Curr Genet 41:189–198

    Article  PubMed  CAS  Google Scholar 

  • Young CA, Bryant MK, Christensen MJ, Tapper BA, Bryan GT, Scott B (2005) Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol Gen Genomics 274:13–29

    Article  CAS  Google Scholar 

  • Zeze A, Hosny M, Gianinazzi-Pearson V, Dulieu H (1996) Characterization of a highly repeated DNA sequence (SC1) from the arbuscular mycorrhizal fungus Scutellospora castanea and its detection in planta. Appl Environ Microbiol 62:2443–2448

    PubMed  CAS  Google Scholar 

  • Zeze A, Hosny M, Van Tuinen D, Gianinazzi-Pearson V, Dulieu H (1999) MYCDIRE, a dispersed repetitive DNA element in arbuscular mycorrhizal fungi. Mycol Res 103:572–576

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armelle Gollotte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gollotte, A., L’Haridon, F., Chatagnier, O. et al. Repetitive DNA sequences include retrotransposons in genomes of the Glomeromycota. Genetica 128, 455–469 (2006). https://doi.org/10.1007/s10709-006-0019-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-0019-0

Keywords

Navigation