Skip to main content
Log in

Safe and Productive Application of Hydraulic Backhoes in Coal-Bearing Areas of Complex Structured Deposits

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

The article describes a problem of hydraulic backhoes usage in coal-bearing areas development in complex structured deposits. At present time there is a mass replacement of previously widely used shovels with more adaptive excavation equipment—hydraulic backhoes in open pits of Kuzbass (the largest Russian coal basin, Western Siberia). On the one hand, it opens up new opportunities for reducing of coal losses and better planning of mining operations in coal-bearing area during the development of rock-and-coal blocks. On the other hand, backhoes usage with the replacement of railway transport for trucks significantly complicates rock-and-coal face parameters determination. It also impose new requirements for dispatching the “excavator—transport unit” work chain. In addition, strict requirements to excavator’s maneuverability for rock-and-coal blocks processing actualize research of safe backhoe positioning on a bench. The article describes the results of technological parameters determination for hydraulic backhoes usage in coal-bearing areas development in complex structured deposits. The most important results are the recommendations for choosing the order of heterogeneous (rock and coal) layers processing and justification of excavation blocks parameters for their layer-by-layer extraction that minimizes the coal losses. Particular attention is paid to the definition of excavated layer parameters depending on bucket capacity and excavated substance. Based on these data, the dependence of hydraulic backhoe productivity on the excavated layer height was defined. The study results are presented in the article on the example of Kuzbass coal deposits being developed by several open pit mines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alabuzhev PM, Alimov OD, Ermolin YN, Shekhovtsov BA (1966) The selection of characteristics for very large mechanical shovels. Sov Min 2(2):183–187

    Article  Google Scholar 

  • Belyakov YI, Boguslavskii VE, Skachkov SA (1985) Evaluating the performance of mine power shovels with composite indicators. Sov Min 21(2):165–167

    Article  Google Scholar 

  • Chen Jin, Qing Fei, Pang Xiaoping (2014) Mechanism optimal design of backhoe hydraulic excavator working device based on digging paths. J Mech Sci Technol 28(1):213–222

    Article  Google Scholar 

  • Diessel CF (1992) Coal-bearing depositional systems. Springer, Berlin, p 721

    Book  Google Scholar 

  • Hota P, Behera B (2016) Opencast coal mining and sustainable local livelihoods in Odisha. India Min Econ 29:1–13

    Article  Google Scholar 

  • Janosevic D et al (2012) Quantitative measures for assessment of the hydraulic excavator digging efficiency. J Zhejiang Univ Sci A 13(12):926–942

    Article  Google Scholar 

  • Karpuz C, Hindistan MA, Bozdag TA (2001) New method for determining the depth of cut using power shovel monitoring. J Min Sci 37(1):85–94

    Article  Google Scholar 

  • Kulakov VN (1995) Geomechanical conditions of mining steep coal beds. J Min Sci 31(2):136–142

    Article  Google Scholar 

  • Lokhanov BN, Zakharov YA, Bereznyak MM, Kalinin AV (1967) Open-cut mines in the Kuzbass: progress and prospects. Sov Min 3(5):523–527

    Article  Google Scholar 

  • Mattis AR, Cheskidov VI, Labutin VN (2012) Choice of the hard rock surface mining machinery in Russia. J Min Sci 48(2):329–338

    Article  Google Scholar 

  • Matushenko VM (1975) A method of comparing excavation equipment. Sov Min 11(5):576–578

    Article  Google Scholar 

  • Molotilov SG, Cheskidov VI, Norri VK, Botvinnik AA (2009) Methodical principles for planning the mining and loading equipment capacity for open cast mining with the use of dumpers. Part II: engineering capacity calculation. J Min Sci 45(1):43–58

    Article  Google Scholar 

  • Oparin VN, Kiryaeva TA, Gavrilov VYu et al (2014) Interaction of geomechanical and physicochemical processes in Kuzbass coal. J Min Sci 50(2):191–214

    Article  Google Scholar 

  • Prakash A, Murthy VMSR, Singh KB (2013) Rock excavation using surface miners: an overview of some design and operational aspects. Int J Min Sci Technol 23(1):33–40

    Article  Google Scholar 

  • Scott B, Ranjith PG, Choi SK, Manoj K (2010) A review on existing opencast coal mining methods within Australia. J Min Sci 46(3):280–297

    Article  Google Scholar 

  • Shishaev SV, Mochalov EA (1988) Evaluating the characteristics of the working process of a hydraulic power shovel with an active dipper. Sov Min 24(5):452–457

    Article  Google Scholar 

  • Tosun A (2014) Determination of excavator type according to rock and excavator characteristics in soft formations that can be excavated directly. J Min Sci 50(2):349–361

    Article  Google Scholar 

  • Tyulenev M, Zhironkin S, Kolotov K, Garina E (2016a) Background of innovative platform for substitution of quarry water purifying technology. Pollut Res 35(2):221–227

    Google Scholar 

  • Tyulenev MA, Gvozdkova TN, Zhironkin SA, Garina EA (2016b) Justification of Open Pit Mining Technology for Flat Coal Strata Processing in Relation to the Stratigraphic Positioning Rate. Geotech Geol Eng. doi:10.1007/s10706-016-0098-3

    Google Scholar 

  • Tyulenev MA, Zhironkin SA, Garina EA (2016c) The method of coal losses reducing at mining by shovels. Int. J. of Mining and Mineral. Engineering 7(4):363–370. doi:10.1504/IJMME.2016.10000781

    Google Scholar 

  • Vukotic I, Kecojevic V (2014) Evaluation of rope shovel operators in surface coal mining using a multi-Attribute decision-Making model. Int J Min Sci Technol 24(2):259–268

    Article  Google Scholar 

  • Zhaoxue Z, Hong Y (2010) Application of open-pit and underground mining technology for residual coal of end slopes. Min Sci Technol 20(2):266–270

    Google Scholar 

  • Zhironkin SA, Khoreshok AA, Tyulenev MA, Barysheva GA, Hellmer MC (2016) Economic and technological role of Kuzbass industry in the implementation of national energy strategy of Russian Federation. IOP Conference Series: Materials Science and Engineering 142(1):012127. doi:10.1088/1757-899X/142/1/012127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Tyulenev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyulenev, M.A., Zhironkin, S.A., Litvin, O.I. et al. Safe and Productive Application of Hydraulic Backhoes in Coal-Bearing Areas of Complex Structured Deposits. Geotech Geol Eng 35, 2065–2077 (2017). https://doi.org/10.1007/s10706-017-0228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-017-0228-6

Keywords

Navigation