Skip to main content

Advertisement

Log in

Nutrition, productivity and soil chemical properties in an apple orchard under weed management

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Weed management in orchard may affect apple tree nutritional status and yield, N flow and other soil chemical properties. This study evaluated apple tree nutritional status and yield, N flow in soil and soil chemical properties in an apple orchard under different weed managements. The experiment was started in October 2011 in an apple orchard established in 2008, on 80 plants submitted to the following treatments: no weed management, weed desiccation in rows, weed mowing in rows and weed mowing in rows and inter-rows. In 2011/2012, 2012/2013, and 2013/2014 crop seasons, stem diameter, number of fruits per plant and yield were measured, and nutrient leaf concentrations were quantified. In 2012/2013 and 2013/2014 crop seasons, soil samples were collected from 0 to 0.20 m layers, in order to quantify NH4 +–N and NO3 –N. In September 2013, 24 months after beginning of the experiment, stratified soil samples were collected in the 0–0.025, 0.025–0.05, 0.05–0.10, 0.10–0.15, 0.15–0.20 and 0.20–0.40 m layers. Soil total organic carbon, pH, available P and exchangeable K, Ca, and Mg were measured. The weed management methods did not affect apple tree yield and growth and they had a small effect on nutrient concentrations in leaves and in soil. Row and inter-row weed management had little or no effect on competition with apple trees for water and nutrients. The weed management can be dispensed during the production cycle, reducing soil erosion, N losses and the use of herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. doi:10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Andersen L, Kühn BF, Bertelsen M, Bruus M, Larsen SE, Strandberg M (2013) Alternatives to herbicides in an apple orchard, effects on yield, earthworms and plant diversity. Agric Ecosyst Environ 172:1–5. doi:10.1016/j.agee.2013.04.004

    Article  CAS  Google Scholar 

  • Arevalo CBM, Drew AP, Volk TA (2005) The effect of common Dutch white clover (Trifolium repens L.), as a green manure, on biomass production, allometric growth and foliar nitrogen of two willow clones. Biomass Bioenergy 29:22–31. doi:10.1016/j.biombioe.2005.02.003

    Article  Google Scholar 

  • Atucha A, Merwin IA, Brown MG (2011) Long-term effects of four groundcover management systems in an apple orchard. HortScience 46:1176–1183

    Google Scholar 

  • Azevedo FA, Rossetto MP, Schinor EH, Martelli IB, Pacheco CA (2012) Influência do manejo da entrelinha do pomar na produtividade da laranjeira-‘Pera’. Rev Bras Frutic 34:134–142. doi:10.1590/S0100-29452012000100019

    Article  Google Scholar 

  • Benbi DK, Boparai AK, Brar K (2014) Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter. Soil Biol Biochem 70:183–192. doi:10.1016/j.soilbio.2013.12.032

    Article  CAS  Google Scholar 

  • Boer CA, Assis RL, Silva GP, Braz AJBP, Barroso AL, Cargnelutti Filho A, Pires FR (2008) Biomassa, decomposição e cobertura do solo ocasionada por resíduos culturais de três espécies vegetais na região Centro-Oeste do Brasil. Rev Bras Ci Solo 32:843–851. doi:10.1590/S0100-06832008000200038

    Article  Google Scholar 

  • Brasil (2004) Ministério da Saúde. Portaria nº 518, de 25 de março de 2004. http://www.abas.org/arquivos/portaria518.pdf. Accessed 23 August 2015

  • Brunetto G, Gatiboni LC, Santos DR, Saggin A, Kaminski J (2005) Nível crítico e resposta das culturas ao potássio em um Argissolo sob sistema plantio direto. Rev Bras Ci Solo 29:565–571. doi:10.1590/S0100-06832005000400009

    Article  Google Scholar 

  • Brunetto G, Ceretta CA, Melo GWB, Kaminski J, Trentin G, Girotto E, Ferreira PAA, Miotto A, Trivelin PCO (2014) Contribution of nitrogen from agricultural residues of rye to ‘Niagara Rosada’ grape nutrition. Sci Hortic 169:66–70. doi:10.1016/j.scienta.2014.02.019

    Article  CAS  Google Scholar 

  • Celette F, Findeling A, Gary C (2009) Competition for nitrogen in an unfertilized intercropping system: the case of an association of grapevine and grass cover in a Mediterranean climate. Eur J Agron 30:41–51. doi:10.1016/j.eja.2008.07.003

    Article  CAS  Google Scholar 

  • Christoffoleti PJ, Carvalho SJP, López-Ovejero RF, Nicolai M, Hidalgo E, Silva JE (2007) Conservation of natural resources in Brazilian agriculture: implications on weed biology and management. Crop Prot 26:383–389. doi:10.1016/j.cropro.2005.06.013

    Article  Google Scholar 

  • Congreves KA, Van Eerd LL (2015) Nitrogen cycling and management in intensive horticultural systems. Nutr Cycl Agroecosyst 102:299–318

    Article  CAS  Google Scholar 

  • CQFS-RS/SC (2004) Manual de adubação e de calagem para os estados do Rio Grande do Sul e Santa Catarina. SBCS – Núcleo Regional Sul/UFRGS, Porto Alegre

  • Dalla Rosa J, Mafra AL, Nohatto MA, Ferreira EZ, Oliveira OLP, Miquelluti J, Cassol PC, Medeiros JC (2009) Atributos químicos do solo e produtividade de videiras alterados pelo manejo de coberturas verdes na Serra Gaúcha. Rev Bras Ci Solo 33:179–187

    Article  CAS  Google Scholar 

  • Eissenstat DM, Bauerle TL, Comas LH, Neilsen D, Neilsen GH, Lakso AN, Smart DR (2007) Seasonal patterns of root growth in relation to shoot phenology in grape and apple. Acta Hortic 721:21–26. doi:10.17660/ActaHortic.2006.721.1

    Google Scholar 

  • Espanhol GL, Albuquerque JA, Mafra AL, Nuernberg NJ, Nava G (2007) Propriedades químicas e físicas do solo modificadas pelo controle de ervas e adubação orgânica em macieira. Rev Ci Agrovet 6:83–94

    Google Scholar 

  • Franchini JC, Meda AR, Cassiolato ME, Miyazawa M, Pavan MA (2001) Potencial de extratos de resíduos vegetais na mobilização do calcário no solo por método biológico. Sci Agric 58:357–360. doi:10.1590/S0103-90162001000200020

    Article  Google Scholar 

  • Franchini JC, Crispino CC, Souza RA, Torres E, Hungria M (2007) Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil Tillage Res 92:18–29. doi:10.1016/j.still.2005.12.010

    Article  Google Scholar 

  • Giacomini SJ, Aita C, Vendruscolo ERO, Cubilla M, Nicoloso RS, Fries MR (2003) Matéria seca, relação C/N e acúmulo de nitrogênio, fósforo e potássio em misturas de plantas de cobertura de solo. Rev Bras Ci Solo 27:325–334. doi:10.1590/S0100-06832003000200012

    Article  Google Scholar 

  • Gómez-Muñoz B, Hinojosa MB, García-Ruiz R (2015) In situ net N mineralisation and nitrification under organic and conventionally managed olive oil orchards. Nutr Cycl Agroecosyst 101:223–239. doi:10.1007/s10705-015-9672-y

    Article  Google Scholar 

  • Guo LB, Halliday MJ, Siakimotu SJM, Gifford RM (2005) Fine root production and litter input: its effect on soil carbon. Plant Soil 272:1–10. doi:10.1007/s11104-004-3611-z

    Article  CAS  Google Scholar 

  • IBGE (2013) Levantamento Sistemático da produção Agrícola: pesquisa mensal de previsão e acompanhamento das safras agrícolas no ano civil. http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/lspa/lspa_201301.pdf. Accessed 23 Aug 2015

  • Montes-Borrego M, Navas-Córtes JA, Landa BB (2013) Linking microbial functional diversity of olive rhizosphere soil to management systems in commercial orchards in southern Spain. Agric Ecosyst Environ 181:169–178. doi:10.1016/j.agee.2013.09.021

    Article  CAS  Google Scholar 

  • Nair A, Ngouajio M (2012) Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl Soil Ecol 58:45–55. doi:10.1016/j.apsoil.2012.03.008

    Article  Google Scholar 

  • Nava G (2010) Produção e crescimento da macieira ‘Fuji’ em resposta à adubação orgânica e manejo de plantas espontâneas. Rev Bras Frutic 32:1231–1237. doi:10.1590/S0100-29452010000400034

    Article  Google Scholar 

  • Nava G, Ciotta MN (2012) Viabilidade do uso do SPAD no diagnóstico do estado de nitrogênio na macieira ‘Fuji’. Rev Ci Agrovet 12:13–20

    Google Scholar 

  • Nava G, Dechen AR, Basso C, Nachtigall GR, Katsurayama JM (2010) Composição mineral de folhas e vigor da macieira ‘Fuji’ em resposta a nitrogênio e potássio. Agropecuária Catarinense 23:77–83

    Google Scholar 

  • Noack SR, McBeath TM, McLaughlin MJ, Smernik RJ, Amstrong RD (2014) Management of crop residues affects the transfer of phosphorus to plant and soil pools: results from a dual-labelling experiment. Soil Biol Biochem 71:31–39. doi:10.1016/j.soilbio.2013.12.022

    Article  CAS  Google Scholar 

  • Pavinato OS, Rosolem CA (2008) Disponibilidade de nutrientes no solo - decomposição e liberação de compostos orgânicos de resíduos vegetais. Rev Bras Ci Solo 32:911–920. doi:10.1590/S0100-06832008000300001

    Article  CAS  Google Scholar 

  • Pelizza TR, Mafra AL, Amarante CVT, Nohatto MA, Vargas L (2009) Coberturas do solo e crescimento da macieira na implantação de um pomar em sistema orgânico de produção. Rev Bras Frutic 21:739–748. doi:10.1590/S0100-29452009000300017

    Article  Google Scholar 

  • Radicettia E, Mancinellia R, Moscettib R, Campiglia E (2016) Management of winter cover crop residues under different tillage conditions affects nitrogen utilization efficiency and yield of eggplant (Solanum melanogena L.) in Mediterranean environment. Soil Tillage Res 155:329–338. doi:10.1016/j.still.2015.09.004

    Article  Google Scholar 

  • Ramos ME, Benítez E, García PA, Robles AB (2010) Cover crops under different managements vc. Frequent tillage in almond orchards in semiarid conditions: effects on soil quality. Appl Soil Tillage 44:6–14. doi:10.1016/j.apsoil.2009.08.005

    Article  Google Scholar 

  • Ramos ME, Robles AB, Sánchez-Navarro A, González-Rebollar JL (2011) Soil responses to different management practices in rainfed orchards in semiarid environments. Soil Tillage Res 112:85–91. doi:10.1016/j.still.2010.11.007

    Article  Google Scholar 

  • Rodrigues MA, Correia CM, Claro AM, Ferreira IQ, Barbosa JC, Moutinho-Pereira JM, Bacelar EA, Fernandes-Silva A, Arrobas M (2013) Soil nitrogen availability in olive orchards after mulching legume cover crop residues. Sci Hortic 158:45–51. doi:10.1016/j.scienta.2013.04.035

    Article  CAS  Google Scholar 

  • Rosolem CA, Calonego JC, Foloni JSS (2005) Potassium leaching from millet straw as affected by rainfall and potassium rates. Commun Soil Sci Plan 36:1063–1074. doi:10.1081/CSS-200050497

    Article  CAS  Google Scholar 

  • Scandellari F, Tonon G, Thalheimer M, Ceccon C, Gioacchini P, Aber JD, Tagliavini M (2007) Assessing nitrogen fluxes from roots to soil associated to rhizodeposition by apple (Malus domestica) trees. Trees 21:499–505. doi:10.1007/s00468-007-0141-3

    Article  CAS  Google Scholar 

  • Schippers P, Joenje W (2002) Modelling the effect of fertiliser, mowing, disturbance and width on the biodiversity of plant communities of field boundaries. Agric Ecosyst Environ 93:351–365

    Article  Google Scholar 

  • Schuster MZ, Szymczak LS, Lustosa SBC, Moraes APA, Francisco R (2013) Interference of weeds in the establishment of white clover as forage crop. Cienc Rural 43:2148–2153. doi:10.1590/S0103-84782013001200005

    Article  Google Scholar 

  • Schütt M, Borken W, Spott O, Stange CF, Matzner E (2014) Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures. Soil Biol Biochem 69:320–327. doi:10.1016/j.soilbio.2013.11.014

    Article  Google Scholar 

  • Sofo A, Nuzzo V, Palese AM, Xiloyannis C, Celano G, Zukowskyj P, Dichio B (2005) Net CO2 storage in Mediterranean olive and peach orchards. Sci Hortic 107:17–24. doi:10.1016/j.scienta.2005.06.001

    Article  Google Scholar 

  • Soil Survey Staff (2006). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edn. Agric. Handbk. 436. U.S. Gov. Print. Office, Washington, DC

  • Steenwerth KL, Belina KM (2008) Cover crops and cultivation: impacts on soil N dynamics, nitrous oxide efflux, and microbiological function in a Mediterranean vineyard agroecosystem. Appl Soil Ecol 40:370–380. doi:10.1016/j.apsoil.2008.06.004

    Article  Google Scholar 

  • Tagliavini M, Tonon G, Scandellari F, Quiñones A, Palmieri S, Menarbin G, Giocchini P, Masia A (2007) Nutrient recycling during the decomposition of apple leaves (Malus domestica) and mowed grasses in orchard. Agric Ecosyst Environ 118:191–200. doi:10.1016/j.agee.2006.05.018

    Article  CAS  Google Scholar 

  • Tedesco MJ, Gianello C, Bissani C, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais. UFRGS, Porto Alegre

    Google Scholar 

  • Urquiaga S, Jantalia CP, Zotarelli L, Alves BJR, Boddey RM (2005) Manejo de sistemas agrícolas para o sequestro de carbono no solo. In: Aquino AM, Assis RL (eds) Conhecimentos e técnicas avançadas para o estudo dos processos da biota no sistema solo-planta. Embrapa, Brasília, pp 257–273

    Google Scholar 

  • Ventura M, Scandellari F, Ventura F, Guzzon B, Pisa PR, Tagliavini M (2008) Nitrogen balance and losses through drainage waters in an agricultural watershed of the Po Valley (Italy). Eur J Agron 29:108–115. doi:10.1016/j.eja.2008.05.002

    Article  CAS  Google Scholar 

  • Ventura M, Zhang C, Baldi E, Fornasier F, Sorrenti G, Panzacchi P, Tonon G (2014) Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. Eur J Soil Sci 65:186–195. doi:10.1111/ejss.12095

    Article  CAS  Google Scholar 

  • Wu J, Yan G, Zhou G, Xu T (2014) Model predictive control of biological nitrogen removal via partial nitrification at low carbon/nitrogen (C/N) ratio. J Environ Chem Eng 30:1899–1906. doi:10.1016/j.jece.2014.08.007

    Article  Google Scholar 

  • Zalamena J, Cassol PC, Brunetto G, Panisson J, Marcon Filho JM, Schlemper C (2013) Produtividade e composição de uva e de vinho de videiras consorciadas com plantas de cobertura. Pesq Agropec Bras 48:182–189. doi:10.1590/S0100-204X2013000200008

    Article  Google Scholar 

  • Zhang XH, Li LQ, Pan GX (2006) Topsoil organic carbon mineralization and CO2 evolution of three paddy soils from south China and the temperature dependence. J Environ Sci 19:319–326. doi:10.1016/S1001-0742(07)60052-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Brunetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, B.S., Ambrosini, V.G., Trapp, T. et al. Nutrition, productivity and soil chemical properties in an apple orchard under weed management. Nutr Cycl Agroecosyst 104, 247–258 (2016). https://doi.org/10.1007/s10705-016-9769-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-016-9769-y

Keywords

Navigation