Skip to main content

Advertisement

Log in

Nutrient recycling and physical indicators of an alley cropping system in a sandy loam soil in the pre-Amazon region of Brazil

  • Original article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

The sustainable management of soils has proved a key challenge for the smallholder agriculture in southeastern Amazonia, Brazil. We assessed the capacity of an alley cropping system to sustain corn productivity. The experiment included six treatments: Clitoria + Pigeon Pea; Leucaena + Pigeon Pea; Acacia + Pigeon Pea; Clitoria + Leucaena; Leucaena + Acacia and Control treatment (no legumes). We determined chemical and physical indicators of soil quality. Leucaena had the highest macronutrient concentrations (40.17 g N kg−1), except for P. All legumes had high Ca (13.82–17.84 g kg−1) and very low P (0.51–2.83 g kg−1) and Mg (1.73–2.92 g kg−1) concentrations. Acacia had the lowest N, P, K and Mg concentrations. Pre-planting soil analysis indicated that soil quality indicators were below the critical levels needed for a productive agricultural system, especially for phosphorus, sum of bases and base saturation. Physical indicators of quality, such as bulk density (1.40–1.30 Mg m−3), total porosity (0.46–0.50 m m−3) and soil aeration capacity (0.10–0.17 m m−3), were substantially improved as a result of the surface application of residues. There was a cumulative effect of residue application on corn crop productivity. Because of its capacity to recycle nutrients and improve soil quality over the period of 3 years, alley cropping in association with no-tillage, can be an efficient strategy for maintaining productivity in the low-fertility soils of the humid tropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson JD, Ingram JSI (1996) Tropical soil biology and fertility: a handbook of methods, 2nd edn. CAB International, Wallingford

    Google Scholar 

  • Balieiro FC, Dias LE, Franco AA, Campello EFC, Faria SM (2004) Acúmulo de nutrientes na parte aérea, na serapilheira acumulada sobre o solo e decomposição de filódios de Acacia mangium Willd. Cienc Florestal 14:59–65

    Google Scholar 

  • Brady NC (1996) Alternatives to slash and burn: a global imperative. Agric Ecosyst Environ 58:3–11. doi:10.1016/0167-8809(96)00650-0

    Article  Google Scholar 

  • Buresh RJ, Tian G (1997) Soil improvement by trees in sub-Saharan Africa. Agrofor Syst 38:51–76. doi:10.1023/A:1005948326499

    Article  Google Scholar 

  • Buresh RJ, Smithson PC, Hellums DT (1997) Building soil phosphorus capital in Africa. In: Buresh RJ, Sanchez PA, Calhoun F (eds) Replenishing Soil Fertility in Africa. SSSA Special Publication Number 51, USA, pp 111–149

  • Busscher WJ, Bauer PJ, Frederick JR (2002) Recompaction of the coastal loamy sand after deep tillage the function of subsequent cumulative rainfall. Soil Tillage Res 68:49–57. doi:10.1016/S0167-1987(02)00083-1

    Article  Google Scholar 

  • Christensen BT (2000) Organic matter in soil: structure, function and turnover. DIAS Report Plant Production no. 30. Danish Institute of Agricultural Sciences, Tjele, Denmark

  • Currie JA (1962) Gaseous diffusion in the aeration of aggregated soils. Soil Sci 92:40–45

    Google Scholar 

  • Dechert G, Veldkamp E, Brumme R (2005) Are partial nutrient balances suitable to evaluate nutrient sustainability of land use systems? Results from a case study in Central Sulawesi, Indonesia. Nutr Cycl Agroecosyst 72:201–212. doi:10.1007/s10705-005-1546-2

    Article  Google Scholar 

  • Drinkwater LE, Snapp SS (2007) Nutrients in agroecosystems: rethinking the management paradigm. Adv Agron 92:163–186. doi:10.1016/S0065-2113(04)92003-2

    Article  CAS  Google Scholar 

  • Embrapa (1979) Manual de métodos de análise de solos. Serviço Nacional de Levantamento e Conservação do Solo, Rio de Janeiro

    Google Scholar 

  • Fearnside P (2002) Fogo e emissão de gases de efeito estufa dos ecossistemas florestais da Amazônia brasileira. Estud Avancados 16:99–123

    Google Scholar 

  • Gliński J, Stępniewski W (1983) Soil aeration and its role for plants. CRC Press, Boca Raton

    Google Scholar 

  • Hartemink AE (2006) Assessing soil fertility decline in the tropics using soil chemical data. Adv Agron 89:179–225. doi:10.1016/S0065-2113(05)89004-2

    Article  CAS  Google Scholar 

  • IAC (2001) Análise química para avaliação da fertilidade de solos tropicais. IAC, Campinas

    Google Scholar 

  • Johnston AE, Goulding KWT, Mercer E (1993) Potassium leaching from a sandy soil. International Potash Institute, Basel, Subject 12(4)

  • Kang BT (1997) Alley cropping—soil productivity and nutrient recycling. For Ecol Manage 91:75–82. doi:10.1016/S0378-1127(96)03886-8

    Article  Google Scholar 

  • Klaus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256:41–66. doi:10.1023/A:1026206511084

    Article  Google Scholar 

  • Leite AAL, Ferraz Júnior ASL, Moura EG, Aguiar ACF (2008) Comportamento de dois genótipos de milho cultivados em sistema de aléias pré-estabelecidos com diferentes leguminosas arbóreas. Bragantia 67:817–825. doi:10.1590/S0006-87052008000400009

    Article  Google Scholar 

  • Lopes AS (1983) Solos sob cerrado: características, propriedades e manejo. Instituto de Potassa e Fosfato (EUA) e Instituto Internacional de Potassa (Suíca), pp 56–60

  • Mafongoya PL, Barak P, Reed JD (2000) Carbon, nitrogen and phosphorus mineralization of tree leaves and manure. Biol Fertil Soils 30:298–305. doi:10.1007/s003740050007

    Article  Google Scholar 

  • Mafongoya PL, Bationo A, Kihara J, Waswa BS (2006) Appropriate technologies to replenish soil fertility in southern África. Nutr Cycl Agroecosyst 76:137–151. doi:10.1007/s10705-006-9049-3

    Article  Google Scholar 

  • Mendonça ES, Stott DE (2003) Characteristics and decomposition rates of pruning residues from a shaded coffee system in Southeastern Brazil. Agrofor Syst 57:117–125. doi:10.1023/A:1023900822261

    Article  Google Scholar 

  • Moura EG, Albuquerque JM, Aguiar ACF (2008) Growth and productivity of corn as affected by mulching and tillage in alley cropping systems. Sci Agric 65:204–208. doi:10.1590/S0103-90162008000200014

    Google Scholar 

  • Myers RJK, Van Noordwijk M, Vityakon P (1997) Synchrony of nutrient release and plant demand: plant litter quality, soil environment and farmer management options. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, UK

    Google Scholar 

  • Palm CA, Myers RJK, Nandwa SM (1997) Combined use of organic and inorganic nutrient sources for soil fertility maintenance and replenishments. In: Buresh RJ, Sanchez PA, Calhoun F (eds). Replenishing Soil Fertility in Africa. SSSA Special Publication, USA, Number 51

  • Resende M, Curi N, Rezende SB, Corrêa GF (2002) Pedologia: base para distinção de ambientes. NEPUT, Viçosa

    Google Scholar 

  • Ribeiro AC, Guimarães PTG, Alvarez VHV (1999) Recomendações para o uso de corretivos e fertilizantes em Minas Gerais—5a Aproximação. UFV, Viçosa

    Google Scholar 

  • Sallan A, Jury WA, Letey J (1984) Measurements of gas diffusion coefficient under relatively low air-filled porosity. Soil Sci Soc Am J 48:3–6

    Article  Google Scholar 

  • Shepherd MA, Harrison R, Webb J (2002) Managing soil organic matter—implications for soil structure on organic farms. Soil Use Manage 18:284–292. doi:10.1079/SUM2002134

    Article  Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, Sa JCM, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 22:755–775. doi:10.1051/agro:2002043

    Article  Google Scholar 

  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de solos, plantas e outros materiais. UFRGS, Porto Alegre

    Google Scholar 

  • Thomasson AJ (1978) Towards an objective classification of soil structure. J Soil Sci 29:38–46. doi:10.1111/j.1365-2389.1978.tb02029.x

    Article  Google Scholar 

  • Tian G, Brussaard L, Kang BT (1995) An index for assessing the quality of plant residues and evaluating their effects on soil and crop in the (sub-) humid tropics. Appl Soil Ecol 2:25–32. doi:10.1016/0929-1393(94)00033-4

    Article  Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD (1985) Soil fertility and fertilizers. Macmillan Publishing Company, New York

    Google Scholar 

  • Van Soest PJ (1967) Development of a comprehensive system of feed analysis and its application to forages. J Anim Sci 26:119–128

    Google Scholar 

  • Raij B van, Cantarella H, Quaggio JA, Furlani AMC (1997) Recomendações de adubação e calagem para o Estado de São Paulo. Instituto Agronômico, Campinas N° 100

  • Vityakon P, Dangthaisong N (2005) Environmental influences on nitrogen transformation of different quality tree litter under submerged and aerobic conditions. Agrofor Syst 63:225–236. doi:10.1007/s10457-005-4161-y

    Article  Google Scholar 

  • Young A (1997) Agroforestry for soil management. Cab International, London

    Google Scholar 

Download references

Acknowledgments

We especially thank the Fundação de Apoio à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) in collaboration with Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for their financial support, and two anonymous reviewers and the editor for helpful comments on the manuscript. We are grateful to Adenir Vieira Teodoro for statistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanoel Gomes de Moura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

das Chagas Ferreira Aguiar, A., Bicudo, S.J., Costa Sobrinho, J.R.S. et al. Nutrient recycling and physical indicators of an alley cropping system in a sandy loam soil in the pre-Amazon region of Brazil. Nutr Cycl Agroecosyst 86, 189–198 (2010). https://doi.org/10.1007/s10705-009-9283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-009-9283-6

Keywords

Navigation