Skip to main content
Log in

Initiation of edge debonding: coupled criterion versus cohesive zone model

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Cohesive zone models and criteria based on finite fracture mechanics are two alternatives to analyze edge debonding. A comparison between the two approaches is presented in this paper. The coupled criterion which combines a stress and an energy conditions to estimate crack initiation is used and compared with a bilinear cohesive law. Predictions of the debonding onset are in good agreement provided the characteristic fracture length of the interface remains smaller than the characteristic dimension of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acary V, Monerie Y (2006) Nonsmooth fracture dynamics using a cohesive zone approach. Research Report RR-6032, INRIA

  • Adams RD, Wake WC (1984) Structural adhesive joints in engineering. Elsevier, USA

    Book  Google Scholar 

  • Alfano G (2006) On the influence of the shape of the interface law on the application of cohesive-zone models. Compos Sci Technol 66:723–730. doi:10.1016/j.compscitech.2004.12.024

    Article  Google Scholar 

  • Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:1701–1736

    Article  Google Scholar 

  • Allix O, Ladeveze P (1992) Interlaminar interface modelling for the prediction of delamination. Compos Struct 22:235–242

    Article  Google Scholar 

  • Allix O, Corigliano A (1996) Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. Int J Fract 77:111–140

    Article  Google Scholar 

  • Banks-Sills L (2015) Interface fracture mechanics: theory and experiment. Int J Fract 191:131–146. doi:10.1007/s10704-015-9997-1

    Article  Google Scholar 

  • Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses. Axially-symmetric Cracks PMM 23:622–636

    Google Scholar 

  • Bertolini J, Castanié B, Barrau J-J, Navarro J-P (2009) Multi-level experimental and numerical analysis of composite stiffener debonding. Part 1: Non-specific specimen level. Compos Struct 90:381–391. doi:10.1016/j.compstruct.2009.04.001

    Article  Google Scholar 

  • Burlet H, Cailletaud G (1991) Zebulon a finite element code for non-linear material behaviour. In: Proceedings of the European conference on new advances in computational structural mechanics, 2–5 April 1991, Giens, France

  • Campilho RDSG, Banea MD, Neto JABP, da Silva LFM (2012) Modelling of single-lap joints using cohesive zone models: effect of the cohesive parameters on the output of the simulations. J Adhes 88:513–533. doi:10.1080/00218464.2012.660834

    Article  Google Scholar 

  • Carpinteri A (1982) Notch sensitivity in fracture testing of aggregative materials. Eng Fract Mech 16:467–481

    Article  Google Scholar 

  • Carpinteri A, Cornetti P, Pugno N et al (2008) A finite fracture mechanics approach to structures with sharp V-notches. Eng Fract Mech 75:1736–1752. doi:10.1016/j.engfracmech.2007.04.010

    Article  Google Scholar 

  • Carrère N, Martin E, Leguillon D (2015) Comparison between models based on a coupled criterion for the prediction of the failure of adhesively bonded joints. Eng Fract Mech 138:185–201. doi:10.1016/j.engfracmech.2015.03.004

    Article  Google Scholar 

  • Corigliano A (1993) Formulation, identification and use of interface models in the numerical analysis of composite delamination. Int J Solids Struct 30:2779–2811

    Article  Google Scholar 

  • Cornetti P, Corrado M, Lorenzis LD, Carpinteri A (2015) An analytical cohesive crack modeling approach to the edge debonding failure of FRP-plated beams. Int J Solids Struct 53:92–106. doi:10.1016/j.ijsolstr.2014.10.017

    Article  Google Scholar 

  • Cornetti P, Pugno N, Carpinteri A, Taylor D (2006) Finite fracture mechanics: a coupled stress and energy failure criterion. Eng Fract Mech 73:2021–2033. doi:10.1016/j.engfracmech.2006.03.010

    Article  Google Scholar 

  • Cotton J, Grant JW, Jensen MK, Love BJ (2001) Analytical solutions to the shear strength of interfaces failing under flexure loading conditions. Int J Adhes Adhes 21:65–70

    Article  Google Scholar 

  • Da Silva LFM, Campilho RDSG (2012) Advances in numerical modelling of adhesive joints. Springer, Berlin, pp 1–93. doi:10.1007/978-3-642-23608-2_1

    Google Scholar 

  • De Lorenzis L, Zavarise G (2009) Cohesive zone modeling of interfacial stresses in plated beams. Int J Solids Struct 46:4181–4191

    Article  Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  • García IG, Leguillon D (2012) Mixed-mode crack initiation at a v-notch in presence of an adhesive joint. Int J Solids Struct 49:2138–2149. doi:10.1016/j.ijsolstr.2012.04.018

    Article  Google Scholar 

  • García IG, Mantič V, Blázquez A, París F (2014) Transverse crack onset and growth in cross-ply laminates under tension: application of a coupled stress and energy criterion. Int J Solids Struct 51:3844–3856. doi:10.1016/j.ijsolstr.2014.06.015

    Article  Google Scholar 

  • García IG, Mantič V, Graciani E (2015) Debonding at the fibre-matrix interface under remote transverse tension. One debond or two symmetric debonds? Eur J Mech-A/Solids 53:75–88. doi:10.1016/j.euromechsol.2015.02.007

    Article  Google Scholar 

  • Gustafson PA, Waas AM (2009) The influence of adhesive constitutive parameters in cohesive zone finite element models of adhesively bonded joints. Int J Solids Struct 46:2201–2215. doi:10.1016/j.ijsolstr.2008.11.016

    Article  Google Scholar 

  • Hashin Z (1996) Finite thermoelastic fracture criterion with application to laminate cracking analysis. J Mech Phys Solids 44:1129–1145

    Article  Google Scholar 

  • Hebel J, Dieringer R, Becker W (2010) Modelling brittle crack formation at geometrical and material discontinuities using a finite fracture mechanics approach. Eng Fract Mech 77:3558–3572. doi:10.1016/j.engfracmech.2010.07.005

    Article  Google Scholar 

  • Hell S, Weißgraeber P, Felger J, Becker W (2014) A coupled stress and energy criterion for the assessment of crack initiation in single lap joints: A numerical approach. Eng Fract Mech 117:112–126. doi:10.1016/j.engfracmech.2014.01.012

    Article  Google Scholar 

  • Henninger C, Leguillon D, Martin E (2007) Crack initiation at a V-notch—comparison between a brittle fracture criterion and the Dugdale cohesive model. Comptes Rendus Mécanique 335:388–393. doi:10.1016/j.crme.2007.05.018

    Article  Google Scholar 

  • Jacques E (2012) PhD Thesis (in french). No 4620, University of Bordeaux

  • Jacques E, Le Petitcorps Y, Maillé L, Lorrette C, Chaffron L (2014) Joining silicon carbide plates by titanium disilicide-based compound. Powder Metall Metal Ceram 52:606–611

    Article  Google Scholar 

  • Leguillon D (2002) Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A/Solids 21:61–72

    Article  Google Scholar 

  • Leguillon D, Laurencin J, Dupeux M (2003) Failure initiation in an epoxy joint between two steel plates. Eur J Mech-A/Solids 22:509–524. doi:10.1016/S0997-7538(03)00066-4

    Article  Google Scholar 

  • Leguillon D, Martin E (2012) The strengthening effect caused by an elastic contrast–part I: the bimaterial case. Int J Fract 179:157–167. doi:10.1007/s10704-012-9787-y

    Article  Google Scholar 

  • Leguillon D, Martin E, Ševeček O, Bermejo R (2015) Application of the coupled stress-energy criterion to predict the fracture behaviour of layered ceramics designed with internal compressive stresses. Eur J Mech-A/Solids 54:94–104. doi:10.1016/j.euromechsol.2015.06.008

    Article  Google Scholar 

  • Leguillon D, Sanchez-Palencia E (1987) Computation of singular solutions in elliptic problems and elasticity. Wiley, USA

    Google Scholar 

  • Leguillon D, Sanchez-Palencia E (1992) Fracture in heterogeneous materials, weak and strong singularities. In: Ladevèze P, Zienkiewicz O (eds) Proceedings of the European conference on new advances in computational structural mechanics. Elsevier, Amsterdam, pp 229–236

    Google Scholar 

  • Lenz J, Schwarz S, Schwickerath H et al (1995) Bond strength of metal-ceramic systems in three-point flexure bond test. J Appl Biomater 6:55–64

    Article  Google Scholar 

  • Liljedahl CDM, Crocombe AD, Wahab MA, Ashcroft IA (2006) Damage modelling of adhesively bonded joints. Int J Fract 141:147–161. doi:10.1007/s10704-006-0072-9

    Article  Google Scholar 

  • Mantič V (2009) Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. Application of a coupled stress and energy criterion. Int J Solids Struct 46:1287–1304. doi:10.1016/j.ijsolstr.2008.10.036

    Article  Google Scholar 

  • Martin E, Leguillon D (2004) Energetic conditions for interfacial failure in the vicinity of a matrix crack in brittle matrix composites. Int J Solids Struct 41:6937–6948. doi:10.1016/j.ijsolstr.2004.05.044

    Article  Google Scholar 

  • Martin E, Leguillon D (2015) A strain energy density criterion for the initiation of edge debonding. Theor Appl Fract Mech 79:58–61. doi:10.1016/j.tafmec.2015.06.011

    Article  Google Scholar 

  • Martin E, Leguillon D, Carrère N (2010) A twofold strength and toughness criterion for the onset of free-edge shear delamination in angle-ply laminates. Int J Solids Struct 47:1297–1305. doi:10.1016/j.ijsolstr.2010.01.018

    Article  Google Scholar 

  • Martin E, Leguillon D, Carrère N (2012) A coupled strength and toughness criterion for the prediction of the open hole tensile strength of a composite plate. Int J Solids Struct 49:3915–3922. doi:10.1016/j.ijsolstr.2012.08.020

    Article  Google Scholar 

  • Martin E, Poitou B, Leguillon D, Gatt JM (2008) Competition between deflection and penetration at an interface in the vicinity of a main crack. Int J Fract 151:247–268. doi:10.1007/s10704-008-9228-0

    Article  Google Scholar 

  • Martin E, Vandellos T, Leguillon D et al (2014) A finite fracture approach for determining the fracture onset of a brazed SiC specimen. Proced Mater Sci 3:129–134. doi:10.1016/j.mspro.2014.06.024

    Article  Google Scholar 

  • Moradi A, Leguillon D, Carrère N (2013a) Influence of the adhesive thickness on a debonding - An asymptotic model. Eng Fract Mech 114:55–68. doi:10.1016/j.engfracmech.2013.10.008

  • Moradi A, Carrère N, Leguillon D et al (2013b) Strength prediction of bonded assemblies using a coupled criterion under elastic assumptions: Effect of material and geometrical parameters. Int J Adhes Adhes 47:73–82. doi:10.1016/j.ijadhadh.2013.09.044

  • Murer S, Leguillon D (2010) Static and fatigue failure of quasi-brittle materials at a V-notch using a Dugdale model. Eur J Mech A Solids 29:109–118. doi:10.1016/j.euromechsol.2009.10.005

    Article  Google Scholar 

  • Nairn JA (2000) Exact and variational theorems for fracture mechanics of composites with residual stresses, traction-loaded cracks and imperfect interfaces. Int J Fract 105:243–271

    Article  Google Scholar 

  • Sapora A, Cornetti P, Carpinteri A (2013) A finite fracture mechanics approach to V-notched elements subjected to mixed-mode loading. Eng Fract Mech 97:216–226. doi:10.1016/j.engfracmech.2012.11.006

    Article  Google Scholar 

  • Schellekens JCJ, De Borst R (1993) A non-linear finite element approach for the analysis of mode-I free edge delamination in composites. Int J Solids Struct 30:1239–1253

    Article  Google Scholar 

  • Turon A, Camanho PP, Costa J, Renart J (2010) Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Compos Struct 92:1857–1864. doi:10.1016/j.compstruct.2010.01.012

    Article  Google Scholar 

  • Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40:1377–1397

    Article  Google Scholar 

  • Vandellos T, Huchette C, Carrère N (2013) Proposition of a framework for the development of a cohesive zone model adapted to Carbon-Fiber Reinforced Plastic laminated composites. Compos Struct 105:199–206. doi:10.1016/j.compstruct.2013.05.018

    Article  Google Scholar 

  • Vandellos T, Martin E, Leguillon D (2014) Comparison between Cohesive zone models and a coupled criterion for prediction of edge debonding, Proceedings of the \(16^{{\rm th}}\) European Conference on Composite Materials, ECCM-16, 22–26 Juin 2014, Séville, Spain

  • Weißgraeber P, Becker W (2013) Finite Fracture Mechanics model for mixed mode fracture in adhesive joints. Int J Solids Struct 50:2383–2394. doi:10.1016/j.ijsolstr.2013.03.012

    Article  Google Scholar 

  • Xu X, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, E., Vandellos, T., Leguillon, D. et al. Initiation of edge debonding: coupled criterion versus cohesive zone model. Int J Fract 199, 157–168 (2016). https://doi.org/10.1007/s10704-016-0101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0101-2

Keywords

Navigation