Skip to main content
Log in

Computational modeling of rubber-toughening in amorphous thermoplastic polymers: a review

  • Special Invited Article Celebrating IJF at 50
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The fracture behavior of rubber-toughened polymers is governed by two dissipative microscopic deformation and damage mechanisms: matrix shear yielding and crazing. These mechanisms are strongly interconnected with the eventual cavitation of the fine dispersed rubber particles. The present work summarizes and discusses a variety of micromechanical–computational modeling approaches undertaken over the past twenty years aiming at an improved understanding of the relation between microstructure and toughening in this class of materials. The focus is on materials such as ABS where both mechanisms are prevalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Argon AS (1973) A theory for the low-temperature plastic deformation of glassy polymers. Philos Mag 28:839–865

    Article  Google Scholar 

  • Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412

    Article  Google Scholar 

  • Basu S, Mahajan DK, Van der Giessen E (2005) Micromechanics of the growth and failure of a craze fibril in glassy polymers. Polymer 46:7504–7518

    Article  Google Scholar 

  • Beahan P, Thomas A, Bevis M (1976) Some observations on the micromorphology of deformed ABS and HIPS rubber-modified materials. J Mater Sci 11:1207–1214

    Article  Google Scholar 

  • Beguelin P, Plummer CJG, Kausch HH (1999) Deformation mechanisms in toughened PMMA. In: Shonaike GO et al (eds) Polymer Blends and Alloys. Marcel Dekker Inc, New York, pp 549–573

    Google Scholar 

  • Bernal CR, Frontini PM, Sforza M, Bibbo MA (1995) Microstructure, deformation and fracture behavior of commercial ABS resins. J Appl Polym Sci 58:1–10

    Article  Google Scholar 

  • Boyce MC, Parks DM, Argon AS (1988) Large inelastic deformation of glassy polymers. Mech Mater 7:15–33

    Article  Google Scholar 

  • Brown HR (1991) A molecular interpretation of the toughness of glassy polymers. Macromolecules 24:2752–2756

    Article  Google Scholar 

  • Bucknall CB (1977) Toughened plastics. Applied Science, London

    Book  Google Scholar 

  • Bucknall CB, Paul DR (2013) Notched impact behavior of polymer blends: Part 2. Dependence of critical particle size on rubber particle volume fraction. Polymer 54:320–329

    Article  Google Scholar 

  • Danielsson M, Parks DM, Boyce MC (2007) Micromechanics, macromechanics and constitutive modeling of the elasto-viscoplastic deformation of rubber-toughened glassy polymers. J Mech Phys Solids 55:533–561

    Article  Google Scholar 

  • Donald AM, Kramer EJ (1982) Plastic deformation mechanisms in poly(acrylonitrile-butadiene styrene) ABS. J Mater Sci 17:1765–1772

    Article  Google Scholar 

  • Estevez R, Van der Giessen E (2005) Modeling and computational analysis of fracture of glassy polymers. Adv Polym Sci 188:195–234

    Article  Google Scholar 

  • Evans AG, Ahmad ZB, Gilbert DG, Beaumont PWR (1986) Mechanisms of toughening in rubber-toughened polymers. Acta Metall 34:79–87

    Article  Google Scholar 

  • Falk ML, Langer JS (1998) Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E 75:7192–7205

    Article  Google Scholar 

  • Fond C, Lobbrecht A, Schirrer R (1996) Polymers toughened with rubber microspheres: an analytical solution for stresses and strains in the rubber particles at equilibrium and rupture. Int J Fract 77:141–159

    Article  Google Scholar 

  • Gearing BP, Anand L (2004) On modeling the deformation and fracture response of glassy polymers due to shear-yielding and crazing. Int J Solids Struct 41:3125–3150

    Article  Google Scholar 

  • Gent AN, Lindley PB (1958) Internal rupture of bonded rubber cylinders in tension. Proc R Soc Lond A138:195–204

    Google Scholar 

  • Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth. J Eng Mat Technol 99:2–15

    Article  Google Scholar 

  • Helbig M, Van der Giessen E, Clausen AH, Seelig Th (2015) Continuum-micromechanical modeling of distributed crazing in rubber-toughened polymers. Eur J Mech A/Solids. doi:10.1016/j.euromechsol.2015.11.007

  • Husaini NM, Kishimoto K, Shibuya T (1997) Crack initiation behavior of ABS resin under mode I and mixed mode loading. Mater Sci Res Int 3:158–165

    Google Scholar 

  • Jar P-YB, Creagh DC, Konishi K, Shinmura T (2002) Mechanical properties and deformation mechanisms in high thermal resistant poly(acrylonitrile-butadiene-styrene) under static tension and izod impact. J Appl Polym Sci 85:17–24

    Article  Google Scholar 

  • Jeong H-Y, Pan J (1996) Crack-tip fields for porous solids with pressure-sensitive matrices and for rubber-modified epoxies. Polym Eng Sci 36:2306–2319

    Article  Google Scholar 

  • Knauss WG (1993) Time-dependent fracture and cohesive zones. J Eng Mater Technol 115:262–267

    Article  Google Scholar 

  • Lai J, Van der Giessen E (1997) A numerical study of crack-tip plasticity in glassy polymers. Mech Mater 25:183–197

    Article  Google Scholar 

  • Lefevre V, Ravi-Chandar K, Lopez-Pamies O (2015) Cavitation in rubber: an elastic instability or a fracture phenomenon? Int J Fract 192:1–23

    Article  Google Scholar 

  • Meijer HEH, Govaert LE (2003) Multiscale analysis of mechanical properties of amorphous polymer systems. Macromol Chem Phys 204:274–288

    Article  Google Scholar 

  • Michler GH (1998) Microstructural construction of polymers with improved mechanical properties. Polym Adv Technol 9:812–822

    Article  Google Scholar 

  • Narisawa I, Yee AF (1993) Crazing and fracture of polymers. In: Thomas EL (ed) Structure and properties of polymers, materials science and technology, A comprehensive treatment, vol 12. VCH Publication, Weinheim, pp 698–765

  • Ni BY, Li JCM, Berry VK (1991) Plastic zone in front of a mode I crack in acrylonitrile-butadiene-styrene polymers. Polymer 32:2766–2770

    Article  Google Scholar 

  • Pijnenburg KGW, Van der Giessen E (2001) Macroscopic yield in cavitated polymer blends. Int J Solids Struct 38:3575–3598

  • Pijnenburg KGW, Van der Giessen E (2003) A novel approach to the analysis of distributed shear banding in polymer blends. Int J Numer Methods Eng 58:703–721

    Article  Google Scholar 

  • Pijnenburg KGW, Seelig T, Van der Giessen E (2005) Successively refined models for crack tip plasticity in polymer blends. Eur J Mech A/Solids 24:740–756

    Article  Google Scholar 

  • Ramaswamy S, Lesser AJ (2002) Microscopic damage and macroscopic yield in acrylonitrile–butadiene–styrene (ABS) resins tested under multi-axial stress states. Polymer 43:3743–3752

    Article  Google Scholar 

  • Rednaz P, Fleck NA, McMeeking RM (1997) Failure of a porous solid from a deep notch. Int J Fract 88:187–203

    Article  Google Scholar 

  • Seelig Th, Van der Giessen E (2002) Localized plastic deformation in ternary polymer blends. Int J Solids Struct 39:3505–3522

    Article  Google Scholar 

  • Seelig Th, Van der Giessen E (2006) Modeling the interaction of crazing and matrix plasticity in rubber-toughened polymers. In: Meijer HEH (ed), Proceedings of 13th International conference on deformation, yield and fracture of polymers, pp 275–278

  • Seelig Th, Van der Giessen E (2009) A cell model study of crazing and matrix plasticity in rubber-toughened glassy polymers. Comput Mater Sci 45:725–728

    Article  Google Scholar 

  • Sharma R, Socrate S (2009) Micromechanics of uniaxial tensile deformation and failure in high impact polystyrene (HIPS). Polymer 50:3386–3395

    Article  Google Scholar 

  • Smit RJM, Brekelmans WAM, Meijer HEH (1999) Prediction of the large-strain mechanical response of heterogeneous polymer systems: local and global deformation behavior of a representative volume element of voided polycarbonate. J Mech Phys Solids 47:201–221

    Article  Google Scholar 

  • Smit RJM, Brekelmans WAM, Meijer HEH (2000) Predictive modeling of the properties and toughness of polymeric materials; part II: effect of microstructural properties on the macroscopic response of rubber-modified polymers. J Mater Sci 35:2869–2879

    Article  Google Scholar 

  • Socrate S, Boyce MC (2000) Micromechanics of toughened polycarbonate. J Mech Phys Solids 48:233–273

    Article  Google Scholar 

  • Steenbrink AC, Janik H, Gaymans RJ (1997a) Deformation and fracture of styrene-acrylonitrile copolymer-rubber blends. J Mater Sci 32:5505–5511

    Article  Google Scholar 

  • Steenbrink AC, Van der Giessen E, Wu PD (1997b) Void growth in glassy polymers. J Mech Phys Solids 45:405–437

    Article  Google Scholar 

  • Steenbrink AC, Van der Giessen E (1999) On cavitation, post-cavitation and yield in amorphous polymer-rubber blends. J Mech Phys Solids 47:843–876

    Article  Google Scholar 

  • Tan ZY, Xu XF, Sun SL, Zhou C, Ao YH, Zhang HX (2006) Influence of rubber content in ABS in wide range on the mechanical properties and morphology of PC/ABS blends with different composition. Polym Eng Sci 46:1476–1484

    Article  Google Scholar 

  • Tijssens MGA, Van der Giessen E, Sluys LJ (2000) Modeling of crazing using a cohesive surface methodology. Mech Mater 32:19–35

    Article  Google Scholar 

  • Wu PD, Van der Giessen E (1996) Computational aspects of localized deformations in amorphous glassy polymers. Eur J Mech A/Solids 15:799–823

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Seelig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van der Giessen, E., Seelig, T. Computational modeling of rubber-toughening in amorphous thermoplastic polymers: a review. Int J Fract 196, 207–222 (2015). https://doi.org/10.1007/s10704-015-0066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0066-6

Keywords

Navigation