Skip to main content
Log in

Simulation of fracture in heterogeneous elastic materials with cohesive zone models

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In brittle composite materials, failure mechanisms like debonding of the matrix-fiber interface or fiber breakage can result in crack deflection and hence in the improvement of the damage tolerance. More generally it is known that high values of fracture energy dissipation lead to toughening of the material. Our aim is to investigate the influence of material parameters and geometrical aspects of fibers on the fracture energy as well as the crack growth for given load scenarios. Concerning simulations of crack growth the cohesive element method in combination with the Discontinuous Galerkin method provides a framework to model the fracture considering strength, stiffness and failure energy in an integrated manner. Cohesive parameters are directly determined by DFT supercell calculations. We perform studies with prescribed crack paths as well as free crack path simulations. In both cases computational results reveal that fracture energy depends on both the material parameters but also the geometry of the fibers. In particular it is shown that the dissipated energy can be increased by appropriate choices of cohesive parameters of the interface and geometrical aspects of the fiber. In conclusion, our results can help to guide the manufacturing process of materials with a high fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7: 55–129

    Article  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620

    Article  Google Scholar 

  • Broedling NC, Hartmaier A, Gao H (2008) Fracture toughness of layered structures: embrittlement due to confinement of plasticity. Eng Fract Mech 75: 3743–3754

    Article  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20-22): 2899–2938

    Article  Google Scholar 

  • Chandra N, Li H, Shet C, Ghonem H (2002) Some issues in the application of cohesive zone models for metal-ceramic interfaces. Int J Solids Struct 39: 2827–2855

    Article  Google Scholar 

  • Curran DR, Seaman L, Cooper T, Shockey DA (1993) Micromechanical model for comminution and granular flow of brittle material under high strain rate application to penetration of ceramic targets. Int J Impact Eng 13(1): 53–83

    Article  Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8: 100–104

    Article  Google Scholar 

  • Eshelby JD (1956) The continuum theory of lattice defects. In: Seitz F, Turnbull D (eds) Progress in solids state physics, vol 3. Academic Press, New York, p 79

    Google Scholar 

  • Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free galerkin methods for crack tip fields. Int J Numer Methods Eng 40: 1483–1504

    Article  Google Scholar 

  • Fritz A, Hüeber S, Wohlmuth BI (2004) A comparison f mortar and Nitsche techniques for linear elasticity. CALCOLO 41: 115–137

    Article  Google Scholar 

  • Geissler G, Kaliske M (2010) Time-dependent cohesive zone modelling for discrete fracture simulation. Eng Fract Mech 77(1): 153–169

    Article  Google Scholar 

  • Gonze X, Amadon B, Anglade PM, Beuken JM, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Coté M, Deutsch T, Genovese L, Ghosez P, Giantomassi M, Goedecker S, Hamann D, Hermet P, Jollet G, Leroux S, Mancini M, Mazevet S, Oliveira M, Onida G, Pouillon Y, Rangel T, Rignanese GM, Sangalli D, Shaltaf R, Torrent M, Verstraete M, Zerah G, Zwanziger J (2009) ABINIT: first-principles approach to material and nanosystem properties. Comput Phys Commun 180(12): 2582–2615

    Article  CAS  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221: 163–198

    Article  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B): 864–871

    Article  Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24: 361–364

    Google Scholar 

  • Irwin GR (1958) Fracture. In: Flügge S (eds) Encyclopedia of physics: elasticity and plasticity. Springer, Berlin, pp 551–590

    Google Scholar 

  • Khludnev A, Leugering G (2009) On elastic bodies with thin rigid inclusions and cracks. Preprint-series of the Institute of Applied Mathematics, University of Erlangen-Nuremberg, 327

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A): 1133–1138

    Article  Google Scholar 

  • Krack M (2005) Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor Chem Acc 114(1): 145–152

    Article  CAS  Google Scholar 

  • Lung CW, Gao H (1985) Analysis of Kic and its temperature dependence of metals by a simplified dislocation model. Physica Status Solidi 87(2): 565–569

    Article  Google Scholar 

  • Martin R (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge

    Google Scholar 

  • Maugin GA, Trimarco C (1992) Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture. Acta Mech 94: 1–28

    Article  Google Scholar 

  • Mergheim J, Kuhl E, Steinmann P (2004) A hybrid discontinuous Galerkin/interface method for the computational modelling of failure. Commun Numer Methods Eng 20: 511–519

    Article  Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12): 5188–5192

    Article  Google Scholar 

  • Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54(3): 525–531

    Article  Google Scholar 

  • Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36(1): 9–15

    Article  Google Scholar 

  • Noels L, Radovitzky R (2008) An explicit disconitinuous galerkin method for non-linear solid dynamics: Formulation, parallel implementation and scalability properties. Int J Numer Methods Eng 74: 1393–1420

    Article  Google Scholar 

  • Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44: 1267–1282

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18): 3865–3868

    Article  CAS  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentraction by notches and cracks. J Appl Mech 35: 379–386

    Google Scholar 

  • Rice JR, Sorensen EP (1978) Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids. J Mech Phys Solids 26: 163–186

    Article  Google Scholar 

  • Rose JH, Smith JR, Ferrante J (1983) Universal features of bonding in metals. Phys Rev B 28(4): 1835–1845

    Article  CAS  Google Scholar 

  • Ruiz G, Pandolfi A (2000) Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. Int J Numer Meth Eng 48(7): 963–994

    Article  Google Scholar 

  • Stumpf H, Le KC (1990) Variational principles of nonlinear fracture mechanics. Acta Mech 83: 25–37

    Article  Google Scholar 

  • Tvergaard V, Hutchinson JW (1993) The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 41(6): 1119–1135

    Article  Google Scholar 

  • Walter ME, Ravichandran G, Ortiz M (1997) Computational modeling of damage evolution in unidirectional fiber reinforced ceramic matrix composites. Comput Mech 20: 192–198

    Article  Google Scholar 

  • Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9): 1397–1434

    Article  Google Scholar 

  • Yang B, Ravi-Chandar K (1998) A single-domain dual-boundary-element formulation incorporating a cohesive zone model for elastostatic cracks. Int J Fract 93: 115–144

    Article  CAS  Google Scholar 

  • Yoo MH, Yoshimi K (2000) An empirical model for ideal work of adhesion: transition-metal aluminides and silicides. Intermetallics 8(9-11): 1215–1224

    Article  CAS  Google Scholar 

  • Zhang H, Wang S (2007) First-principles study of Ti3AC2 (A=Si, Al) (001) surfaces. Acta Materialia 55(14): 4645–4655

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prechtel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prechtel, M., Ronda, P.L., Janisch, R. et al. Simulation of fracture in heterogeneous elastic materials with cohesive zone models. Int J Fract 168, 15–29 (2011). https://doi.org/10.1007/s10704-010-9552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9552-z

Keywords

Navigation