Skip to main content
Log in

Time Symmetric Quantum Mechanics and Causal Classical Physics ?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A two boundary quantum mechanics without time ordered causal structure is advocated as consistent theory. The apparent causal structure of usual “near future” macroscopic phenomena is attributed to a cosmological asymmetry and to rules governing the transition between microscopic to macroscopic observations. Our interest is a heuristic understanding of the resulting macroscopic physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Group theoretical both subsystems have the structure of a sub algebra of the Lie algebras \(SU(n_{\mathrm {measured\, subsystem}})\) and \(SU(n_{\mathrm {wittnessing\, subsystem}})\). The combined system \(SU(n_{\mathrm {measured\, subsystem}}+n_{\mathrm {wittnessing\, subsystem}})\) contains among many other elements a U(1) allowing for a arbitrary relative phase between the subsystems which can be transferred to the measured subsystem.

  2. Such an emission and absorption were required in theories in which the photon had no separate reality  [29, 60, 61] A generalization is the “transactional” interpretation [53].

  3. The unity argument follows [61].

  4. No statement is necessary about the observed tiny CP or the related T violation. If attributed to p.e. a CP asymmetric baryon imbalance of vacuum  [33, 62, 63] it has nothing to do with a real time arrow or the CPT structure. The vacuum might evolve or switch on the considered asymmetry.

  5. The description with formally independent evolutions is redundant. It suffices to consider just the wave function \(\phi (t)\) and eliminate the complex conjugate using \(\phi ^*(t)=\phi (T-t)\) where T is the lifetime of the universe and the asterisk is the conjugate. The probability that a state \(\phi (t_1)\) goes to \(\phi (t_2)\) requires a congruence of a transition \(<\phi (t_1)| U(t_1,t_2) |\phi (t_2)>\) in the expanding universe and a transition \(<\phi (T-t_2)| U(T-t_2,T-t_1) |\phi (T-t_1)>\) in the contracting one. It provides a beautiful explanation of bilinear Born probabilities in quantum mechanics.

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  2. Schrödinger, E.: Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 664–666 (1926)

    Article  MATH  ADS  Google Scholar 

  3. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 823–828 (1935)

    Article  MATH  ADS  Google Scholar 

  4. Wigner, E.P.: Remarks on the Mind Body Question, in “The Scientist Speculates”. Heinmann, London (1961)

    Google Scholar 

  5. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

    Article  MATH  ADS  Google Scholar 

  6. Bell, J.S., et al.: On the einstein-podolsky-rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  7. Mermin, N.D.: What is quantum mechanics trying to tell us? Am. J. Phys. 66, 753–767 (1998)

    Article  ADS  Google Scholar 

  8. Barrett, J.A.: The Quantum Mechanics of Minds and Worlds. Oxford University Press, Oxford (1999)

    Google Scholar 

  9. Friebe, C., Kuhlmann, M., Lyre, H., Näger, P., Passon, O., Stöckler, M.: Philosophie der Quantenphysik: Einführung und Diskussion der zentralen Begriffe und Problemstellungen der Quantentheorie für Physiker und Philosophen. Springer, Berlin (2014)

    MATH  Google Scholar 

  10. Brown, R.H., Twiss, R.Q.: Interferometry of the intensity fluctuations in light. I. Basic theory: the correlation between photons in coherent beams of radiation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 242. The Royal Society (1957)

  11. Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410 (1964)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. Wiley, Berlin (2008)

    MATH  Google Scholar 

  13. Gell-Mann, M., Hartle, J.B.: Time symmetry and asymmetry in quantum mechanics and quantum cosmology. Phys. Orig. Time Asymmetry 1, 311–345 (1994)

    ADS  Google Scholar 

  14. Wheeler, J.A., Zurek, W.H., Ballentine, L.E.: Quantum theory and measurement. Am. J. Phys. 52, 955–955 (1984)

    Article  ADS  Google Scholar 

  15. Wheeler, J.A., Zurek, W.H.: Quantum Theory and Measurement. Princeton 1University Press, Princeton (2014)

    Google Scholar 

  16. Hellmuth, T., Walther, H., Zajonc, A., Schleich, W.: Delayed-choice experiments in quantum interference. Phys. Rev. A 35, 2532 (1987)

    Article  ADS  Google Scholar 

  17. Ma, X.-S., Kofler, J., Zeilinger, A.: Delayed-choice gedanken experiments and their realizations, arXiv preprint arXiv:1407.2930 (2014)

  18. Bopp, F.W.: Strings and Hanbury-Brown-Twiss Correlations in hadron physics, Theoretisch-Physikalischen Kolloquium der Universität Ulm (2001)

  19. Kittel, W., De Wolf, E.A.: Soft Multihadron Dynamics. World Scientific, Singapore (2005)

    Book  Google Scholar 

  20. Quabis, S., Dorn, R., Eberler, M., Glöckl, O., Leuchs, G.: Focusing light to a tighter spot. Opt. Commun. 179, 1–7 (2000)

    Article  ADS  Google Scholar 

  21. Sondermann, M., Maiwald, R., Konermann, H., Lindlein, N., Peschel, U., Leuchs, G.: Design of a mode converter for efficient light-atom coupling in free space. Appl. Phys. B 89, 489–492 (2007)

    Article  ADS  Google Scholar 

  22. Drexhage, K.H.: Interaction of light with monomolecular dye layers. Prog. Opt. 12, 163–232 (1974)

  23. Walther, H., Varcoe, B.T., Englert, B.-G., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006)

    Article  ADS  Google Scholar 

  24. de Broglie, L.: La structure atomique de la matière et du rayonnement et la méchanique ondulatoire. Comptes Rendus de l’Académie des Sci. 184, 273–274 (1927)

    MATH  Google Scholar 

  25. Bohm, D., Aharonov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108, 1070 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  26. Dürr, D., Teufel, S.: Bohmian Mechanics. Springer, Berlin (2009)

    MATH  Google Scholar 

  27. Sakurai, J.J., Napolitano, J.J.: Modern Quantum Mechanics. Pearson Higher Ed, Upper Saddle River (2014)

    Google Scholar 

  28. Ritz, W.: Über die Grundlagen der Elektrodynamik un die Theorie der schwarzen Strahlung. Phys. Z. 9, 903–907 (1908)

    MATH  Google Scholar 

  29. Tetrode, H.: über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik. Z. Phys. A Hadrons Nucl. 10, 317–328 (1922)

    Google Scholar 

  30. Frenkel, J.: Zur elektrodynamik punktfoermiger elektronen. Z. Phys. 32, 518–534 (1925)

    Article  MATH  ADS  Google Scholar 

  31. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)

    Article  MathSciNet  ADS  Google Scholar 

  32. Ritz, W., Einstein, A.: Zum gegenwärtigen stand des strahlungsproblems. Phys. Z. 10, 323–324 (1909)

    MATH  Google Scholar 

  33. Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  34. Andersson, B., Hofmann, W.: Bose-Einstein correlations and color strings. Phys. Lett. B 169, 364–368 (1986)

    Article  ADS  Google Scholar 

  35. Metzger, W., Novák, T., Csörgő, T., Kittel, W.: Bose-Einstein correlations and the Tau-model. arXiv preprint arXiv:1105.1660 (2011)

  36. Haken, H.: Laser Light Dynamics, vol. 2. North-Holland, Amsterdam (1985)

    Google Scholar 

  37. Schulman, L.S.: Time’s Arrows and Quantum Measurement. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  38. Price, H.: Does time-symmetry imply retrocausality? How the quantum world says Maybe? Stud. Hist. Philos. Sci. B 43, 75 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Aharonov, Y., Popescu, S., Tollaksen, J.: A time-symmetric formulation of quantum mechanics. Phys. Tod. 63(11), 27–32 (2010)

  40. Miller, D.J.: Realism and time symmetry in quantum mechanics. Phys. Lett. A 222, 31–36 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Reznik, B., Aharonov, Y.: Time-symmetric formulation of quantum mechanics. Phys. Rev. A 52, 2538 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  42. Goldstein, S., Tumulka, R.: Opposite arrows of time can reconcile relativity and nonlocality. Class. Quantum Gravity 20, 557 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. t’Hooft, G.: Quantization of discrete deterministic theories by Hilbert space extension. Nucl. Phys. B 342, 471–485 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  44. Everett III, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  45. Bopp, F. (senior): Werner Heisenberg und die Physik unserer Zeit. Vieweg, Braunschweig (1961)

  46. Aharonov, Y., Cohen, E., Elitzur, A.C.: Foundations and applications of weak quantum measurements. Phys. Rev. A 89, 052105 (2014a)

    Article  ADS  Google Scholar 

  47. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2013)

    MATH  Google Scholar 

  49. Zeh, H.D.: There are no quantum jumps, nor are there particles!. Phys. Lett. A 172, 189–192 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  50. Kiefer, C.: Zeitpfeil und Quantumgravitation, Physikalisches Kolloquium der Universität Siegen (2008)

  51. Aharonov, Y., Cohen, E., Gruss, E., Landsberger, T.: Measurement and collapse within the two-state vector formalism. Quantum Stud. 1, 133–146 (2014b)

    Article  MATH  Google Scholar 

  52. Gold, T.: The Nature of Time. Cornell University Press, Ithaca (1967)

    MATH  Google Scholar 

  53. Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  54. Bohr, N.: Die Physik und das Problem des Lebens. Vieweg, Braunschweig (1958)

    Google Scholar 

  55. Conway, J., Kochen, S.: The free will theorem. Found. Phys. 36, 1441–1473 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. Kastner, R.: “The born rule and free will”, (2016), contribution to an edited collection by C. de Ronde et al

  57. Marsaglia, G., Zaman, A., Tsang, W.W.: Toward a universal random number generator. Stat. Probab. Lett. 9, 35–39 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  58. t’Hooft, G.: Black hole unitarity and antipodal entanglement, arXiv:1601.03447 [gr-qc] (2016)

  59. Craig, D.A.: Observation of the final boundary condition: extragalactic background radiation and the time symmetry of the universe. Ann. Phys. 251, 384–425 (1996)

    Article  MATH  ADS  Google Scholar 

  60. Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157 (1945)

    Article  ADS  Google Scholar 

  61. Süssmann, G.: Die spontane Lichtemission in der unitären Quantenelektrodynamik. Z. Phys. 131, 629–662 (1952)

    Article  MATH  ADS  Google Scholar 

  62. Bopp, F.W.: Novel ideas about emergent vacua. Acta Phys. Polon. B 42, 1917 (2011a). arXiv:1010.4525 [hep-ph]

    Article  Google Scholar 

  63. Bopp, F. W.: Novel ideas about emergent vacua and Higgs-like particles. In: Hadron structure. Proceedings, 5th Joint International Conference, Hadron Structure’11, HS’11, Tatranska Strba, Slovakia, June 27–July 1, 2011, Nuclear Physics Proceedings Supplements, Vol. 219–220, p. 259 (2011b)

Download references

Acknowledgements

We thank David Craig, Claus Kiefer and Wolfgang Schleich for help in pointing out relevant literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz W. Bopp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bopp, F.W. Time Symmetric Quantum Mechanics and Causal Classical Physics ?. Found Phys 47, 490–504 (2017). https://doi.org/10.1007/s10701-017-0074-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0074-7

Keywords

Navigation