Skip to main content
Log in

Weyl, Dirac and Maxwell Quantum Cellular Automata

Analitical Solutions and Phenomenological Predictions of the Quantum Cellular Automata Theory of Free Fields

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Recent advances on quantum foundations achieved the derivation of free quantum field theory from general principles, without referring to mechanical notions and relativistic invariance. From the aforementioned principles a quantum cellular automata (QCA) theory follows, whose relativistic limit of small wave-vector provides the free dynamics of quantum field theory. The QCA theory can be regarded as an extended quantum field theory that describes in a unified way all scales ranging from an hypothetical discrete Planck scale up to the usual Fermi scale. The present paper reviews the automaton theory for the Weyl field, and the composite automata for Dirac and Maxwell fields. We then give a simple analysis of the dynamics in the momentum space in terms of a dispersive differential equation for narrowband wave-packets. We then review the phenomenology of the free-field automaton and consider possible visible effects arising from the discreteness of the framework. We conclude introducing the consequences of the automaton dispersion relation, leading to a deformed Lorentz covariance and to possible effects on the thermodynamics of ideal gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Other approaches to discrete spacetime based on p-adic numbers were studied in Ref. [26].

  2. We denote as \([A,B]_+\) the anticommutator \(AB+BA\). The commutator \(AB-BA\) will be denoted as \([A,B]_-\).

  3. This step would require a more precise mathematical characterization (which we omit) of the presented assumptions. See Ref. [20] for the details.

  4. In order to prove this step one needs a stronger isotropy condition than the one presented in the text. See Ref. [20] for the details.

  5. We denote as \(A^*\) the complex conjugate of A.

  6. Since a QCA describes an evolution discrete in time, the derivative with respect to time is not defined in this context. However we can imagine \(A_\mathbf {k}^{t}\) to be defined for any real value of t and then derive with respect the continuous variable t. This is the construction underlying Eq. (11).

  7. More precisely, Eq. (8) leads to two identical copies of Eq. (17).

  8. As for order of magnitude, we consider numerical values corresponding to ultra high energy cosmic rays (UHECR) [51].

References

  1. Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Foundations of Physics (2015). (in press)

  2. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)

    Google Scholar 

  3. ’tHooft, G.: The Cellular Automaton Interpretation of Quantum Mechanics. A View on the Quantum Nature of our Universe, Compulsory or Impossible? arXiv:1405.1548

  4. Elze, H.-T.: Action principle for cellular automata and the linearity of quantum mechanics. Phys. Rev. A 89, 012111 (2014)

    Article  ADS  Google Scholar 

  5. Feynman, R.: Simulating physics with computers. Int. J. Theoret. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  6. Schumacher, B., Werner, R.: Reversible quantum cellular automata arXiv:quant-ph/0405174 (2004)

  7. Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. Comput. Syst. Sci. 77(2), 372–378 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gross, D., Nesme, V., Vogts, H., Werner, R.: Index Theory of One Dimensional Quantum Walks and Cellular Automata Communications in Mathematical Physics, pp. 1–36. McGraw-Hill, New York (2012)

    Google Scholar 

  9. Grossing, G., Zeilinger, A.: Quantum cellular automata. Complex Syst. 2(2), 197–208 (1988)

    MathSciNet  Google Scholar 

  10. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  11. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third annual ACM Symposium on Theory of Computing, pp. 37–49. ACM, New York (2001)

  12. Reitzner, D., Nagaj, D., Buẑek, V.: Quantum walks, acta physica slovaca. Rev. Tutor. 61(6), 603–725 (2011)

    Google Scholar 

  13. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 59–68. ACM, New York (2003)

  14. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree, arXiv:quant-ph/0702144 (2007)

  17. D’Ariano, G.: On the “principle of the quantumness”, the quantumness of relativity, and the computational grand-unification, CP1232 Quantum Theory: Reconsid. Found. 5, 3 (2010)

    Google Scholar 

  18. D’Ariano, G.M.: Physics as quantum information processing: quantum fields as quantum automata. Phys. Lett. A 376, 697 (2011)

    Article  MathSciNet  Google Scholar 

  19. Bisio, A., D’Ariano, G.M., Tosini, A.: Quantum field as a quantum cellular automaton: the Dirac free evolution in one dimension. Ann. Phys. 354, 244–264 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  20. D’Ariano, G.M., Perinotti, P.: Derivation of the Dirac equation from principles of information processing. Phys. Rev. A 90, 062106 (2014)

    Article  ADS  Google Scholar 

  21. Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum cellular automaton theory of light, arXiv:1407.6928 (2014)

  22. Arrighi, P., Nesme, V., Forets, M.: The Dirac equation as a quantum walk: higher dimensions, observational convergence. J. Phys. A 47(46), 465302 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  23. Arrighi, P., Facchini, S.: Decoupled quantum walks, models of the Klein–Gordon and wave equations. Europhys. Lett. 104(6), 60004 (2013)

    Article  ADS  Google Scholar 

  24. Farrelly, T.C., Short, A.J.: Causal fermions in discrete space-time. Phys. Rev. A 89(1), 012302 (2014)

    Article  ADS  Google Scholar 

  25. Farrelly, T.C., Short, A.J.: Discrete spacetime and relativistic quantum particles, arXiv:1312.2852 (2013)

  26. Albeverio, S., Cianci, R., Khrennikov, AYu.: p-Adic valued quantization. P-Adic Numbers Ultrametr. Anal. Appl. 1(2), 91–104 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ellis, J., Mavromatos, N., Nanopoulos, D.V.: String theory modifies quantum mechanics. Phys. Lett. B 293(1), 37–48 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  28. Lukierski, J., Ruegg, H., Zakrzewski, W.J.: Classical and quantum mechanics of free \(\kappa \)-relativistic systems. Ann. Phys. 243(1), 90–116 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. ’t Hooft, G.: Quantization of point particles in (2 + 1)-dimensional gravity and spacetime discreteness. Class. Quantum Grav. 13, 1023 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Amelino-Camelia, G.: Testable scenario for relativity with minimum length. Phys. Lett. B 510(1), 255–263 (2001)

    Article  MATH  ADS  Google Scholar 

  31. Magueijo, J., Smolin, L.: Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 88, 190403 (2002)

    Article  ADS  Google Scholar 

  32. De Broglie, L.: Une nouvelle conception de la lumière, vol. 181. Hermamm & Cie, Paris (1934)

    Google Scholar 

  33. Jordan, P.: Zur Neutrinotheorie des Lichtes. Zeitschrift für Physik 93(7–8), 464–472 (1935)

    Article  ADS  Google Scholar 

  34. Kronig, R.D.L.: On a relativistically invariant formulation of the neutrino theory of light. Physica 3(10), 1120–1132 (1936)

    Article  ADS  Google Scholar 

  35. Perkins, W.: Statistics of a composite photon formed of two fermions. Phys. Rev. D 5, 1375–1384 (1972)

    Article  ADS  Google Scholar 

  36. Perkins, W.: Quasibosons. Int. J. Theoret. Phys. 41(5), 823 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Bisio, A., D’Ariano, G.M., Tosini, A.: Dirac quantum cellular automaton in one dimension: Zitterbewegung and scattering from potential. Phys. Rev. A 88, 032301 (2013)

    Article  ADS  Google Scholar 

  38. D’Ariano, G.M., Mosco, N., Perinotti, P., Tosini, A.: Path-integral solution of the one-dimensional Dirac quantum cellular automaton. Phys. Lett. A 378(43), 3165–3168 (2014). doi:10.1016/j.physleta.2014.09.020

    Article  ADS  Google Scholar 

  39. D’Ariano, G., Mosco, N., Perinotti, P., Tosini, A.: Discrete Feynman propagator for the Weyl quantum walk in 2+ 1 dimensions. EPL 109, 40012 (2015)

    Article  Google Scholar 

  40. Succi, S., Benzi, R.: Lattice Boltzmann equation for quantum mechanics. Physica D 69(3), 327–332 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Bialynicki-Birula, I.: Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D 49(12), 6920 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  42. Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5), 551–574 (1996)

    Article  MATH  ADS  Google Scholar 

  43. Schrödinger, E.: Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Akademie der wissenschaften in kommission bei W. de Gruyter u,Company(1930)

  44. Lurié, D., Cremer, S.: Zitterbewegung of quasiparticles in superconductors. Physica 50(2), 224–240 (1970)

    Article  ADS  Google Scholar 

  45. Cannata, F., Ferrari, L.: Effects of the nonrelativistic Zitterbewegung on the electron-phonon interaction in two-band systems. Phys. Rev. B 44(16), 8599 (1991)

    Article  ADS  Google Scholar 

  46. Ferrari, L., Russo, G.: Nonrelativistic zitterbewegung in two-band systems. Phys. Rev. B 42(12), 7454 (1990)

    Article  ADS  Google Scholar 

  47. Cannata, F., Ferrari, L., Russo, G.: Dirac-like behaviour of a non-relativistic tight binding Hamiltonian in one dimension. Solid State Commun. 74(4), 309–312 (1990)

    Article  ADS  Google Scholar 

  48. Zhang, X.: Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal. Phys. Rev. Lett. 100, 113903 (2008). doi:10.1103/PhysRevLett.100.113903

    Article  ADS  Google Scholar 

  49. Kurzyński, P.: Relativistic effects in quantum walks: Klein’s paradox and zitterbewegung. Phys. Lett. A 372(40), 6125–6129 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. Meyer, D.A.: Quantum lattice gases and their invariants. Int. J. Modern Phys. C 8(04), 717–735 (1997)

    Article  ADS  Google Scholar 

  51. Takeda, M., Hayashida, N., Honda, K., Inoue, N., Kadota, K., Kakimoto, F., Kamata, K., Kawaguchi, S., Kawasaki, Y., Kawasumi, N., et al.: Extension of the cosmic-ray energy spectrum beyond the predicted Greisen–Zatsepin–Kuz’min cutoff. Phys. Rev. Lett. 81(6), 1163–1166 (1998)

    Article  ADS  Google Scholar 

  52. Amelino-Camelia, G., Ellis, J., Mavromatos, N., Nanopoulos, D.V., Sarkar, S.: Tests of quantum gravity from observations of \(\gamma \)-ray bursts. Nature 393(6687), 763–765 (1998)

    Article  ADS  Google Scholar 

  53. Abdo, A., Ackermann, M., Ajello, M., Asano, K., Atwood, W., Axelsson, M., Baldini, L., Ballet, J., Barbiellini, G., Baring, M., et al.: A limit on the variation of the speed of light arising from quantum gravity effects. Nature 462(7271), 331–334 (2009)

    Article  ADS  Google Scholar 

  54. Vasileiou, V., Jacholkowska, A., Piron, F., Bolmont, J., Couturier, C., Granot, J., Stecker, F., Cohen-Tannoudji, J., Longo, F.: Constraints on Lorentz invariance violation from fermi-large area telescope observations of gamma-ray bursts. Phys. Rev. D 87(12), 122001 (2013)

    Article  ADS  Google Scholar 

  55. Amelino-Camelia, G., Smolin, L.: Prospects for constraining quantum gravity dispersion with near term observations. Phys. Rev. D 80(8), 084017 (2009)

    Article  ADS  Google Scholar 

  56. Dunne, M.: High intensity laser physics: recent results and developments at the central laser facility, UK, In: Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America), pp. 1–2 (2007)

  57. Bisio, A., D’Ariano, G.M., Perinotti, P.: Lorentz symmetry for 3d Quantum Cellular Automata arXiv:1503.0101

  58. Bibeau-Delisle, A., Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Doubly-special relativity from quantum cellular automata. Europhys. Lett. 109, 50003 (2015)

    Article  ADS  Google Scholar 

  59. Amelino-Camelia, G.: Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Modern Phys. D 11(01), 35–59 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  60. Amelino-Camelia, G., Piran, T.: Planck-scale deformation of Lorentz symmetry as a solution to the ultrahigh energy cosmic ray and the TeV-photon paradoxes. Phys. Rev. D 64(3), 036005 (2001)

    Article  ADS  Google Scholar 

  61. Amelino-Camelia, A.: Quantum-gravity phenomenology: status and prospects. Modern Phys. Lett. A 17(15n17), 899–922 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  62. Magueijo, J., Smolin, L.: Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 67(4), 044017 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  63. Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., Smolin, L.: Relative locality: a deepening of the relativity principle. Int. J. Modern Phys. D 20(14), 2867–2873 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  64. Amelino-Camelia, G., Astuti, V., Rosati, G.: Relative locality in a quantum spacetime and the pregeometry of k-Minkowski. Eur. Phys. J. C 73(8), 1–11 (2013). doi:10.1140/epjc/s10052-013-2521-8

    Article  Google Scholar 

  65. Connes, A., Lott, J.: Particle models and noncommutative geometry. Nucl. Phys. B 18(2), 29–47 (1991)

    Article  MathSciNet  Google Scholar 

  66. Lukierski, J., Ruegg, H., Nowicki, A., Tolstoy, V.N.: q-deformation of Poincaré algebra. Phys. Lett. B 264(3), 331–338 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  67. Majid, S., Ruegg, H.: Bicrossproduct structure of \(\kappa \)-Poincare group and non-commutative geometry. Phys. Lett. B 334(3), 348–354 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  68. Amelino-Camelia, G., Loret, N., Mandanici, G., Mercati, F.: UV and IR quantum-spacetime effects for the Chandrasekhar model. Int. J. Modern Phys. D 21(06), 1250052 (2012)

    Article  ADS  Google Scholar 

  69. Camacho, A.: White dwarfs as test objects of Lorentz violations. Class. Quantum Gravit. 23(24), 7355 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the Templeton Foundation under the Project ID# 43796 A Quantum-Digital Universe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Perinotti.

Additional information

Work presented at the conference Quantum Theory: from Problems to Advances, held on 9–12 June 2014 at Linnaeus University, Vaxjo University, Sweden. This paper, together with Ref. [1], contains future perspective and an original presentation of our most important recent results in the line of research on quantum cellular automata and quantum field theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisio, A., D’Ariano, G.M., Perinotti, P. et al. Weyl, Dirac and Maxwell Quantum Cellular Automata. Found Phys 45, 1203–1221 (2015). https://doi.org/10.1007/s10701-015-9927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9927-0

Keywords

Navigation