Skip to main content
Log in

Relativistic Fermi-Gas Model for Nucleus

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Spin-half fermions are considered to be limited in a spherical potential well with periodic boundary conditions. The whole system is treated like a relativistic Fermi Gas. Solving the corresponding Dirac equation, the density of states, the Fermi energy, the average energy, the density of states of nucleons and the total energy of the ground-state are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greiner, W., Maruhn, J.A.: Nuclear Models. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  2. Men, F.D., Liu, H.: The instability conditions of a weakly interacting Fermi gas trapped in weak magnetic field. Chin. Phys. 15, 2856–2860 (2006)

    Article  ADS  Google Scholar 

  3. Suzuki, M., Suzuki, I.S.: Free electron Fermi gas model: specific heat and Pauli paramagnetism. In: Lecture Note on Solid State Physic Department of Physics, State University of New York at Binghamton, Binghamton, New York pp. 13902–6000 (2006, June 15).

  4. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt, Rinehart and Winston, New York (1976). ISBN 0-03-083993-9.

  5. Ginocchio, J.N.: Relativistic symmetries in nuclei and hadrons. Phys. Rep. 414, 165–261 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  6. Ginocchio, J.N., Leviatan, A.: Relativistic Symmetry in Nuclei. Phys. Lett. B 425, 1–5 (1998)

    Article  ADS  Google Scholar 

  7. Ginocchio, J.N.: Pseudospin as a relativist symmetry. Phys. Rev. Lett 78(436), 436–439 (1997)

    Article  ADS  Google Scholar 

  8. Zhang, F.L., Fu, B., Chen, J.L.: Higgs algebraic symmetry in two-dimensional Dirac equation. Phys. Rev. A 80, 054102–4 (2009)

    Article  ADS  Google Scholar 

  9. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nature Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  10. Bagchi, B., Ganguly, A.: A unified treatment of exactly solvable and quasi-exactly solvable quantum potentials. J. Phys A Math. Gen. 36, 161–167 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  11. Alonso, V., De Vincenzo, S.: General boundary conditions for a Dirac particle in a box and their non-relativistic limits. J. Phys. A 30, 8573–8585 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Roy, S.M., Singh, V.: Fractional total-charge Eigenvalues for a fermion in a finite one-dimensional box. Phys. Lett B. 143, 179–182 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  13. Rajaraman, R., Bell, J.S.: On solitons with half integral charge. Phys. Lett. 116, 151–154 (1982)

    Article  Google Scholar 

  14. Alhaidari, A.D.: Dirac particle in a square well and in a box. In: Proceedings of the Fifth Saudi Physical Society Conference (SPS5), A. Al-Hajry et al. (ed.), AIP Conference Proceedings, American Institute of Physics, Melville, New York, vol. 1370, pp. 21–25 (2011).

  15. Springford, M.: Electrons at the Fermi Surface. Cambridge University Press, Cambridge (1980).

  16. Ziman, J.: Electrons in Metals: A Short Guide to the Fermi Surface. Taylor & Francis, London (1964)

    Google Scholar 

  17. Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S.: Dirac equation with vector and scalar cornell potentials and an external magnetic field. Ann. Phys. 525(12), 944–950 (2013).

  18. Alberto, P., Fiolhais, C., Gil, V.M.S.: Relativistic particle in a box. Eur. J. Phys. 17, 19–24 (1996)

    Article  Google Scholar 

  19. Zwerger, W.: The BCS-BEC Crossover and the Unitary Fermi Gas. Springer, Berlin (2011).

  20. Wei, G.F., Dong, S.H.: Pseudospin symmetry in the relativistic Manning–Rosen potential including a Pekeris-type approximation to the pseudo-centrifugal term. Phys. Lett. B 686, 288–292 (2010)

    Article  ADS  Google Scholar 

  21. Maruhn, J.A., Reinhard, P.G., Suraud, E.: Simple Models of Many-Fermion Systems. Springer, Berlin (1977).

  22. Greiner, W., Müller, B.: Quantum Mechanics. Symmetries, Springer, New York (1994)

  23. Moniz, E.J.: Pion electroproduction from nuclei. Phys. Rev. 184, 1154–1161 (1969)

    Article  ADS  Google Scholar 

  24. Miller, G.A.: Fermi gas model. Nucl. Phys. B 112, 223–225 (2002). (Proc. Suppl.)

    Article  Google Scholar 

  25. Mengoli, A., Nakajima, Y.: Fermi-gas model parametrization of nuclear level density. J. Nucl. Sci. Tech. 31, 151–162 (1994)

    Article  Google Scholar 

  26. Meyerhof, W.E.: Elements of Nuclear Physics. McGraw-Hill, New York (1967)

    Google Scholar 

Download references

Acknowledgments

It is a great pleasure for authors to thank the kind referees for their many useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hassanabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanabadi, H., Armat, A. & Naderi, L. Relativistic Fermi-Gas Model for Nucleus. Found Phys 44, 1188–1194 (2014). https://doi.org/10.1007/s10701-014-9836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9836-7

Keywords

Navigation