Skip to main content
Log in

Brownian Computation Is Thermodynamically Irreversible

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Brownian computers are supposed to illustrate how logically reversible mathematical operations can be computed by physical processes that are thermodynamically reversible or nearly so. In fact, they are thermodynamically irreversible processes that are the analog of an uncontrolled expansion of a gas into a vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. For an account of Einstein analysis, see Norton ([16], Sect. 3).

  2. While the process is not thermodynamically reversible, we recover the same thermodynamic entropy change for the environment by imagining another thermodynamically reversible process in which heat energy P. E trap is passed to the environment.

  3. The expression is simplified using S p (T)=E p (T)/T. This follows from considering the momentum degrees of freedom contribution to both entropy and energy during a thermodynamically reversible heating from T=0.

  4. It is a quite delicate matter to explain the cogency of the notion of a thermodynamically reversible process when proper realization of the process entails that nothing changes, so no process occurs. For my attempt see Norton [19].

  5. For isothermal, isobaric chemical reactions, the relevant generalized force is the chemical potential μ A=(∂G A /∂n A ) T,P , where G A =E+PVTS is the Gibbs free energy of reagent A and n A the number of moles of A. In dilute solutions, \(\mu_{\mathrm{A}} = \mu_{\mathrm{A}_{0}} + RT \ln [A]\) for R the ideal gas constant, \(\mu_{A_{0}}\) the chemical potential at reference conditions and [A] the molar concentration. While each chemical reaction is reversible at the molecular level, the term RTln[A] contributes an entropic force, so that a chemical reaction will be thermodynamically irreversible if the concentrations of the reagents and products are not constantly adjusted to keep them at equilibrium levels.

  6. I believe the “nearly” refers to the small external force they add corresponding to the energy ramp of Sect. 3.5 above.

  7. Bennett ([6], p. 329) writes:

    When truly random data (e.g. a bit equally likely to be 0 or 1) is erased, the entropy increase of the surroundings is compensated by an entropy decrease of the data, so that the operation as a whole is thermodynamically reversible….When erasure is applied to such [nonrandom] data, the entropy increase of the environment is not compensated by an entropy decrease of the data, and the operation is thermodynamically irreversible.

    To interpret these remarks, one needs to know that Bennett tacitly assumes an inefficient erasure procedure that also creates kln2 of thermodynamic entropy that is passed to the environment.

  8. For other critiques of Landauer’s principle, see Maroney [14] and Hemmo and Shenker ([10], Chaps. 11–12). For historical perspective, see Bennett [5].

  9. See also Bennett ([2], pp. 905–906, 923) for similar remarks.

References

  1. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MATH  Google Scholar 

  2. Bennett, C.H.: The thermodynamics of computation—a review. Int. J. Theor. Phys. 21, 905–940 (1982). Reprinted in Leff and Rex [13], Chap. 7.1

    Article  Google Scholar 

  3. Bennett, C.H.: Thermodynamically reversible computation. Phys. Rev. Lett. 53(12), 1202 (1984)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Landauer, R.: The fundamental physical limits of computation. Sci. Am. 253, 48–56 (1985)

    Article  ADS  Google Scholar 

  5. Bennett, C.H.: Demons, engines and the second law. Sci. Am. 257(5), 108–116 (1987)

    Article  ADS  Google Scholar 

  6. Bennett, C.: Notes on the history of reversible computation. IBM J. Res. Dev. 32(1), 16–23 (1988). Reprinted in Leff and Rex, 327–334 [13]

    Article  Google Scholar 

  7. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549–560 (1905). Reprinted as Doc. 16 in Stachel [24] and Doc. I in Einstein [9]

    Article  MATH  Google Scholar 

  8. Einstein, A.: Theoretische Bemergkungen Über die Brownsche Bewegung. Z. Elektrochem. Angew. Phys. Chem. 13, 41–42 (1907). Doc. 40 in Stachel [24] and Doc. IV in Einstein [9]

    Article  Google Scholar 

  9. Einstein, A.: Investigations on the Theory of the Brownian Movement. R. Fürth (ed.), A.D. Cowper trans. Methuen (1926) repr. New York: Dover, 1956

  10. Hemmo, M., Shenker, O.: The Road to Maxwell’s Demon. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  11. Ladyman, J., Presnell, S., Short, A.: The use of the information-theoretic entropy in thermodynamics. Stud. Hist. Philos. Mod. Phys. 39, 315–324 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961). Reprinted in Leff and Rex [13], Chap. 4.1

    Article  MathSciNet  MATH  Google Scholar 

  13. Leff, H.S., Rex, A. (eds.): Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing. Institute of Physics Publishing, Bristol and Philadelphia (2003)

    Google Scholar 

  14. Maroney, O.J.E.: The absence of a relationship between thermodynamic and logical irreversibility. Stud. Hist. Philos. Mod. Phys. 36, 355–374 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Norton, J.D.: Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 36, 375–411 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Norton, J.D.: Atoms entropy quanta: Einstein’s miraculous argument of 1905. Stud. Hist. Philos. Mod. Phys. 37, 71–100 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Norton, J.D.: Waiting for Landauer. Stud. Hist. Philos. Mod. Phys. 42, 184–198 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Norton, J.D.: The end of the thermodynamics of computation: a no go result. In: PSA 2012: Philosophy of Science Association Biennial Meeting (2012). http://philsci-archive.pitt.edu/id/eprint/9658. (to appear)

    Google Scholar 

  19. Norton, J.D.: Infinite idealizations. In: Galavotti, M.C., et al. (eds.) European Philosophy of Science—Philosophy of Science in Europe and the Viennese Heritage: Vienna Circle Institute Yearbook, vol. 17, pp. 197–210. Springer, Dordrecht-Heidelberg-London-New York (2014)

    Chapter  Google Scholar 

  20. Norton, J.D.: All shook up: fluctuations, Maxwell’s demon and the thermodynamics of computation. Entropy (2013). doi:10.3390/e150x000x

  21. Planck, M.: Treatise on Thermodynamics. Trans. A. Ogg. Longmans, Green, London (1903)

    Google Scholar 

  22. Poynting, J.H., Thomson, J.J.: A Text-Book of Physics: Heat, 2nd edn. Charles Griffith, London (1906)

    Google Scholar 

  23. Sommerfeld, A.: Thermodynamik und Statistik, 2nd edn. Harri Deutsch, Frankfurt (2002) (1962)

    Google Scholar 

  24. Stachel, J., et al. (eds.): The Collected Papers of Albert Einstein: Vol. 2: The Swiss Years: Writing, 1900–1902. Princeton University Press, Princeton (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Norton.

Additional information

I thank Laszlo Kish for helpful discussion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norton, J.D. Brownian Computation Is Thermodynamically Irreversible. Found Phys 43, 1384–1410 (2013). https://doi.org/10.1007/s10701-013-9753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9753-1

Keywords

Navigation