Skip to main content
Log in

Cartan’s Spiral Staircase in Physics and, in Particular, in the Gauge Theory of Dislocations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In 1922, Cartan introduced in differential geometry, besides the Riemannian curvature, the new concept of torsion. He visualized a homogeneous and isotropic distribution of torsion in three dimensions (3d) by the “helical staircase”, which he constructed by starting from a 3d Euclidean space and by defining a new connection via helical motions. We describe this geometric procedure in detail and define the corresponding connection and the torsion. The interdisciplinary nature of this subject is already evident from Cartan’s discussion, since he argued—but never proved—that the helical staircase should correspond to a continuum with constant pressure and constant internal torque. We discuss where in physics the helical staircase is realized: (i) In the continuum mechanics of Cosserat media, (ii) in (fairly speculative) 3d theories of gravity, namely (a) in 3d Einstein-Cartan gravity—this is Cartan’s case of constant pressure and constant intrinsic torque—and (b) in 3d Poincaré gauge theory with the Mielke-Baekler Lagrangian, and, eventually, (iii) in the gauge field theory of dislocations of Lazar et al., as we prove for the first time by arranging a suitable distribution of screw dislocations. Our main emphasis is on the discussion of dislocation field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Badur, J., Stumpf, H.: On the influence of E. and F. Cosserat on modern continuum mechanics and field theory. University of Bochum, Institute for Mechanics, Communication number 72, (December 1989), 39 pages

  2. Baekler, P., Hehl, F.W.: A micro-deSitter spacetime with constant torsion: a new vacuum solution of the Poincaré gauge field theory. In: Lecture Notes in Physics, vol. 176, pp. 1–15. Springer, Berlin (1983)

    Google Scholar 

  3. Baekler, P., Mielke, E.W., Hehl, F.W.: Dynamical symmetries in topological 3D gravity with torsion. Nuovo Cimento B 107, 91–110 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bañados, M., Teitelboim, C., Zanelli, J.: The Black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849–1851 (1992). arXiv:hep-th/9204099

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Capriz, G.: Continua with Microstructure. Springer Tracts Nat. Phil., vol. 35. Springer, Berlin (1989)

    MATH  Google Scholar 

  6. Carlip, S.: Quantum Gravity in 2+1 Dimensions. Cambridge Univ. Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  7. Cartan, É.: Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. C.R. Acad. Sci. (Paris) 174, 593–595 (1922). English translation by Kerlick, G.D.: On a generalization of the notion of Riemann curvature and spaces with torsion. In: Bergmann, P.G., De Sabbata, V. (eds.) Proc. of the 6th Course of Internat. School on Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity, pp. 489–491, Erice, 1979. Plenum Press, New York (1980); with subsequent comments of Trautman, A.: pp. 493–496

    Google Scholar 

  8. Cartan, É.: On Manifolds with an Affine Connection and the Theory of General Relativity. Bibliopolis, Napoli (1986). (Engl. transl. of French original 1923/24)

    MATH  Google Scholar 

  9. Cosserat, E. et F.: Théorie des Corps Déformables. Hermann, Paris (1909). Translated into English by Delphenich, D. (2007)

    Google Scholar 

  10. Costa de Beauregard, O.: Translational inertial spin effect. Phys. Rev. 129, 466–471 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)

    MATH  Google Scholar 

  12. Eshelby, J.D.: The elastic energy-momentum tensor. J. Elast. 5, 321–335 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  13. García, A.A., Hehl, F.W., Heinicke, C., Macías, A.: Exact vacuum solution of a (1+2)-dimensional Poincaré gauge theory: BTZ solution with torsion. Phys. Rev. D 67, 124016 (2003) (7 pages). arXiv:gr-qc/0302097

    Article  MathSciNet  ADS  Google Scholar 

  14. Gronwald, F., Hehl, F.W.: On the gauge aspects of gravity. In: Bergmann, P.G., De Sabbata, V. (eds.) Proc. of the 6th Course of Internat. School on Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity, Erice, 1979, pp. 148–198. Plenum, New York (1980). arXiv:gr-qc/9602013

    Google Scholar 

  15. Gronwald, F., Hehl, F.W.: Stress and hyperstress as fundamental concepts in continuum mechanics and in relativistic field theory. In: Ferrarese, G. (ed.) Advances in Modern Continuum Dynamics, International Conference in Memory of Antonio Signorini, Isola d’Elba, June 1991, pp. 1–32. Pitagora Editrice, Bologna (1993). arXiv:gr-qc/9701054

    Google Scholar 

  16. Günther, W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschweig. Wiss. Ges. 10, 195–213 (1958)

    MATH  Google Scholar 

  17. Hehl, F.W., Kröner, E.: On the constitutive law of an elastic medium with moment stresses. Z. f. Naturf. 20a, 336–350 (1965) (In German)

    ADS  Google Scholar 

  18. Hehl, F.W., Obukhov, Y.N.: Foundations of Classical Electrodynamics: Charge, Flux, and Metric. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  19. Hehl, F.W., Obukhov, Y.N.: Élie Cartan’s torsion in geometry and in field theory an essay. Ann. Fond. Louis Broglie 32, 157–194 (2007). arXiv:0711.1535

    MathSciNet  Google Scholar 

  20. Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976)

    Article  ADS  Google Scholar 

  21. Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  22. Heinicke, C.: Exact solutions in Einstein’s theory and beyond. PhD thesis, University of Cologne (2004)

  23. Jaunzemis, W.: Continuum Mechanics. MacMillan, New York (1967)

    MATH  Google Scholar 

  24. Katanaev, M.O.: Geometric theory of defects. Phys. Usp. 48, 675–701 (2005). Usp. Fiz. Nauk 175, 705–733 (2005). arXiv:cond-mat/0407469

    Article  ADS  Google Scholar 

  25. Katanaev, M.O., Volovich, I.V.: Theory of defects in solids and three-dimensional gravity. Ann. Phys. (NY) 216, 1–28 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Kleinert, H.: Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation. World Scientific, Hackensack (2008)

    MATH  Google Scholar 

  27. Kleman, M.: Forms of matter and forms of radiation (32 pages). arXiv:0905.4643

  28. Kleman, M., Friedel, J.: Disclinations dislocations, and continuous defects: a reappraisal. Rev. Mod. Phys. 80, 61–115 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  29. Klemm, D., Tagliabue, G.: The CFT dual of AdS gravity with torsion. Class. Quantum Gravity 25, 035011 (2008) (12 pages)

    Article  MathSciNet  ADS  Google Scholar 

  30. Kondo, K.: On the geometrical and physical foundations of the theory of yielding. In: Proceedings of the 2nd Japan National Congress for Applied Mechanics, pp. 41–47, Tokyo (1952)

  31. Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Ergebnisse der Angew. Mathematik. Springer, Berlin (1958)

    MATH  Google Scholar 

  32. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 4, 273–333 (1960)

    Article  MATH  Google Scholar 

  33. Kröner, E.: The continuized crystal—a bridge between micro—and macromechanics. Z. Angew. Math. Mech. (ZAMM) 66, T284–T294 (1986)

    Google Scholar 

  34. Kröner, E.: Continuum theory of defects. In: Balian, R., et al. (ed.) Physics of Defects, Les Houches, Session XXXV, 1980, pp. 215–315. North-Holland, Amsterdam (1981)

    Google Scholar 

  35. Lazar, M.: Dislocation theory as a 3-dimensional translation gauge theory. Ann. Phys. (Leipzig) 9, 461–473 (2000). arXiv:cond-mat/0006280

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Lazar, M.: An elastoplastic theory of dislocations as a physical field theory with torsion. J. Phys. A: Math. Gen. 35, 1983–2004 (2002). arXiv:cond-mat/0105270

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Lazar, M.: On the Higgs mechanism and stress functions in the translational gauge theory of dislocations. Phys. Lett. A 373, 1578–1582 (2009). arXiv:0903.0990

    Article  ADS  Google Scholar 

  38. Lazar, M.: The gauge theory of dislocations: a uniformly moving screw dislocation. Proc. R. Soc. (Lond.) A 465, 2505–2520 (2009). arXiv:0904.4578

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Lazar, M., Anastassiadis, C.: The gauge theory of dislocations: conservation and balance laws. Philos. Mag. 88, 1673–1699 (2008). arXiv:0806.0999

    Article  ADS  Google Scholar 

  40. Lazar, M., Anastassiadis, C.: The gauge theory of dislocations: static solutions of screw and edge dislocations. Philos. Mag. 89, 199–231 (2009). arXiv:0802.0670

    Article  ADS  Google Scholar 

  41. Lazar, M., Anastassiadis, C.: Translational conservation and balance laws in the gauge theory of dislocations. In: Steinmann, P. (ed.) IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics. IUTAM Bookseries, vol. 17, pp. 215–227. Springer, Berlin (2009)

    Chapter  Google Scholar 

  42. Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157–1184 (2005). arXiv:cond-mat/0502023

    Article  MathSciNet  Google Scholar 

  43. Lazar, M., Maugin, G.A.: On microcontinuum field theories: the Eshelby stress tensor and incompatibility conditions. Philos. Mag. 87, 3853–3870 (2007)

    Article  ADS  Google Scholar 

  44. Maluf, J.W., Ulhoa, S.C., Faria, F.F.: The Pound-Rebka experiment and torsion in the Schwarzschild spacetime. Phys. Rev. D 80, 044036 (2009) (6 pages) arXiv:0903.2565

    Article  ADS  Google Scholar 

  45. Malyshev, C.: The T(3)-gauge model the Einstein-like gauge equation, and Volterra dislocations with modified asymptotics. Ann. Phys. (NY) 286, 249–277 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993)

    MATH  Google Scholar 

  47. Maugin, G.A.: Geometry and thermodynamics of structural rearrangements: Ekkehart Kröner’s legacy. Z. Angew. Math. Mech. (ZAMM) 83, 75–84 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Maugin, G.A.: Pseudo-plasticity and pseudo-inhomogeneity effects in material mechanics. J. Elast. 71, 81–103 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  49. Mielke, E.W., Baekler, P.: Topological gauge model of gravity with torsion. Phys. Lett. A 156, 399–403 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  50. Mielke, E.W., Rincón Maggiolo, A.A.: Rotating black hole solution in a generalized topological 3D gravity with torsion. Phys. Rev. D 68, 104026 (2003) (7 pages)

    Article  MathSciNet  ADS  Google Scholar 

  51. Mielke, E.W., Rincon Maggiolo, A.A.: S-duality in 3D gravity with torsion. Ann. Phys. (NY) 322, 341–362 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. Neff, P.: Cosserat Theory. Article on his homepage http://www.uni-due.de/~hm0014/Cosserat.html

  53. Nester, J.M.: Normal frames for general connections. Ann. Phys. (Berlin) 19, 45–52 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  54. Puntigam, R.A., Soleng, H.H.: Volterra distortions spinning strings, and cosmic defects. Class. Quantum Gravity 14, 1129–1149 (1997). arXiv:gr-qc/9604057

    Article  MATH  ADS  Google Scholar 

  55. Ruggiero, M.L., Tartaglia, A.: Einstein-Cartan theory as a theory of defects in space-time. Am. J. Phys. 71, 1303–1313 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  56. Schaefer, H.: Das Cosserat Kontinuum. Z. Angew. Math. Mech. (ZAMM) 47, 485–498 (1967)

    Article  MATH  Google Scholar 

  57. Schaefer, H.: Die Motorfelder des dreidimensionalen Cosserat-Kontinuums im Kalkül der Differentialformen, Int. Centre for Mechanical Sciences (CISM), Udine, Italy, Courses and Lectures, Sobrero, L., (ed.) No. 19 (60 pages) (1970)

  58. Schücking, E.L.: Gravitation is torsion (7 pages). arXiv:0803.4128

  59. Schücking, E.L.: Einstein’s apple and relativity’s gravitational field (36 pages) arXiv:0903.3768v2

  60. Schücking, E.L., Surowitz, E.J.: Einstein’s apple: his first principle of equivalence (30 pages). arXiv:gr-qc/0703149

  61. Shie, K.F., Nester, J.M., Yo, H.J.: Torsion cosmology and the accelerating universe. Phys. Rev. D 78, 023522 (2008) (16 pages). arXiv:0805.3834

    Article  ADS  Google Scholar 

  62. Trautman, A.: Einstein-Cartan theory. In: Francoise, J.-P., et al. (eds.) Encyclopedia of Math. Physics, pp. 189–195. Elsevier, Oxford (2006). arXiv:gr-qc/0606062

    Chapter  Google Scholar 

  63. Voigt, W.: Theoretische Studien über die Elastizitätsverhältnisse der Krystalle. Abh. Königl. Ges. Wiss. Göttingen (math. Kl.) 34, 3–52 (1887)

    Google Scholar 

  64. Zeghadi, A., Forest, S., Gourgues, A.-F., Bouaziz, O.: Cosserat continuum modelling of grain size effects in metal polycrystals. Proc. Appl. Math. Mech. 5, 79–82 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Lazar.

Additional information

Dedicated to Professor Peter Mittelstaedt on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazar, M., Hehl, F.W. Cartan’s Spiral Staircase in Physics and, in Particular, in the Gauge Theory of Dislocations. Found Phys 40, 1298–1325 (2010). https://doi.org/10.1007/s10701-010-9440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9440-4

Keywords

Navigation