Skip to main content

Advertisement

Log in

Waiting for Aπαταω: 250 Years Later

  • Published:
Foundations of Science Aims and scope Submit manuscript

“At this place, at this moment of time, all mankind is us, whether we like it or not. Let us make the most of it, before it is too late!. And we are blessed in this, that we happen to know the answer. Yes, in this immense confusion one thing alone is clear. We are waiting for Godot to come”.

Samuel Beckett, Waiting for Godot (Beckett 1953).

Abstract

Scientific articles have been traditionally written from single points of view. In contrast, new knowledge is derived strictly from a dialectical process, through interbreeding of partially disparate perspectives. Dialogues, therefore, present a more veritable form for representing the process behind knowledge creation. They are also less prone to dogmatically disseminate ideas than monologues, alongside raising awareness of the necessity for discussion and challenging of differing points of view, through which knowledge evolves. Here we celebrate 250 years since the discovery of the chemical identity of the inorganic component of bone in 1769 by Johan Gottlieb Gahn through one such imaginary dialogue between two seasoned researchers and aficionados of this material. We provide the statistics on ups and downs in the popularity of this material throughout the history and also discuss important achievements and challenges associated with it. The shadow of Samuel Beckett’s Waiting for Godot is cast over the dialogue, acting as its frequent reference point and the guide. With this dialogue presented in the format of a play, we provide hope that conversational or dramaturgical compositions of scientific articles—albeit virtually prohibited from the scientific literature of the day—may become more pervasive in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn, T. K., Lee, D. H., Kim, T. S., Jang, G. C., Choi, S., Oh, J. B., et al. (2018). Modification of titanium implant and titanium dioxide for bone tissue engineering. Advances in Experimental Medicine and Biology,1077, 355–368.

    Google Scholar 

  • Aikin A., & Aikin, C. R. (1807) Dictionary of chemistry and mineralogy, with an Account of the Processes Employed in Many of the Most Important Chemical Manufactures (Vol. II, pp. 176). London: John and Arthur Arch, Cornhill.

    Google Scholar 

  • Albee, F. H. (1920). Studies in bone growth: Triple calcium phosphate as a stimulus to osteogenesis. Annals in Surgery,71(1), 32–39.

    Google Scholar 

  • Basic Energy Sciences Advisory Committee. (2015). Challenges at the frontiers of matter and energy: Transformative opportunities for discovery science. Washington, DC: U.S. Department of Energy.

    Google Scholar 

  • Bateson, G. (1972). Steps to an ecology of mind. Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Bateson, G. (1979). Mind and nature: A necessary unity. Cresskill, NJ: Hampton Press.

    Google Scholar 

  • Beckett, S. (1953). Waiting for godot: A tragicomedy in two acts. New York, NY: Grove Press.

    Google Scholar 

  • Benjakul, S., Mad-Ali, S., Senphan, T., & Sookchoo, P. (2017). Biocalcium powder from precooked skipjack tuna bone: Production and its characteristics. Journal of Food Biochemistry,41, e12412.

    Google Scholar 

  • Boyle, R. A., Lenton, T. M., & Williams, H. T. P. (2007). Neoproterozoic ‘snowball earth’ glaciations and the evolution of altruism. Geobiology,5(4), 337–349.

    Google Scholar 

  • Brecht, B. (1955). Life of galileo. In J. Willett & R. Manheim (Eds.), Bertolt brecht: Plays, poetry and prose. London: Methuen.

    Google Scholar 

  • Campana, V., Milano, G., Pagano, E., Barba, M., Cicione, C., Salonna, G., et al. (2014). Bone substitutes in orthopaedic surgery: From basic science to clinical practice. Journal of Materials Science Materials in Medicine,25(10), 2445–2461.

    Google Scholar 

  • Cazalbou, S., Combes, C., Eichert, D., & Rey, C. (2004). Adaptative physico-chemistry of bio-related calcium phosphates. Journal of Materials Chemistry,14, 2148–2153.

    Google Scholar 

  • Coupland, D. (2010). Marshall McLuhan: You know nothing of my work! (p. 87). New York, NY: Atlas & Co.

    Google Scholar 

  • Crabb, C. (2006). Doris #23. Portland, OR: Microcosm Publishing.

    Google Scholar 

  • Craven, B. M. (1976). Crystal structure of cholesterol monohydrate. Nature,260, 727–729.

    Google Scholar 

  • Dennick, R., & Spencer, J. (2011). Teaching and learning in small groups. In T. Dornan, K. V. Mann, A. J. J. A. Scherpbier, & J. A. Spencer (Eds.), Medical education: Theory and practice E-Book. Oxford: Elsevier.

    Google Scholar 

  • Djerassi, C. (2012). Chemistry in theatre: Insufficiency, phallacy or both. London: Imperial College Press.

    Google Scholar 

  • Djerassi, C., & Hoffmann, R. (2001). Oxygen. New York, NY: Wiley.

    Google Scholar 

  • Do, T. N., Lee, W. H., Loo, C. Y., Zavgorodniy, A. V., & Rohanizadeh, R. (2012). Hydroxyapatite nanoparticles as vectors for gene delivery. Therapeutic Delivery,3, 623–632.

    Google Scholar 

  • Dorozhkin, S. V. (2009). Calcium orthophosphates in nature, biology and medicine. Materials,2, 399–498.

    Google Scholar 

  • Dorozhkin, S. V. (2013). A detailed history of calcium orthophosphates from 1770 s till 1950. Materials Science and Engineering C,33, 3085–3110.

    Google Scholar 

  • Dürrenmatt, F. (1964). The physicists. Translated from German by James Kirkup. New York: Grove Press.

    Google Scholar 

  • Dylan, B. (1975) Idiot wind [Recorded by Bob Dylan]. On Blood on the tracks. New York, NY: Columbia Records.

  • Eftekharzadeh, S., Sabetkish, N., Sabetkish, S., & Kajbafzadeh, A. M. (2017). Comparing the bulking effect of calcium hydroxyapatite and Deflux injection into the bladder neck for improvement of urinary incontinence in bladder exstrophy-epispadias complex. International Urology and Nephrology,49(2), 183–189.

    Google Scholar 

  • Eliaz, N., & Metoki, N. (2017). Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials,10, 334.

    Google Scholar 

  • Epple, M. (2018). Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomaterialia,77, 1–14.

    Google Scholar 

  • Essamlali, Y., Amadine, O., Larzek, M., Len, C., & Zahouily, M. (2017). Sodium modified hydroxyapatite: Highly efficient and stable solid-base catalyst for biodiesel production. Energy Conversion and Management,149, 355–367.

    Google Scholar 

  • Euclidis. (1888). Elementa. Leipzig: B. G. Teubner.

    Google Scholar 

  • Farley, J. C. (2012). The economics of sustainability. In H. Cabezas & U. Diwekar (Eds.), Sustainability: Multi-disciplinary perspectives. Oak Park, IL: Bentham Science Publishers.

    Google Scholar 

  • Fosca, M., Komlev, V. S., Fedotov, A. Y., Caminiti, R., & Rau, J. V. (2012). Structural study of octacalcium phosphate bone cement conversion in vitro. ACS Applied Materials & Interfaces,4(11), 6202–6210.

    Google Scholar 

  • Fukase, Y., Eanes, E. D., Takagi, S., Chow, L. C., & Brown, W. E. (1990). Setting reactions and compressive strengths of calcium phosphate cements. Journal of Dental Research,69(12), 1852–1856.

    Google Scholar 

  • Ghosh, S., Wu, V. M., Pernal, S., & Uskoković, V. (2016). Self-setting calcium phosphate cements with tunable antibiotic release rates for advanced bone graft applications. ACS Applied Materials & Interfaces,8(12), 7691–7708.

    Google Scholar 

  • Giovannini, R., & Freitag, R. (2001). Comparison of different types of ceramic hydroxyapatite for the chromatographic separation of plasmid DNA and a recombinant anti-Rhesus D antibody. Bioseparation,9, 359–368.

    Google Scholar 

  • Gogolewski, S., & Gorna, K. (2007). Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects. Journal of Biomedical Materials Research A,80(1), 94–101.

    Google Scholar 

  • Gryshkov, O., Klyui, N. I., Temchenko, V. P., Kyselov, V. S., Chatterjee, A., Belyaev, A. E., et al. (2016). Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. Materials Science and Engineering C,68, 143–152.

    Google Scholar 

  • Guerrier, L., Flayeux, I., & Boschetti, E. (2001). A dual-mode approach to the selective separation of antibodies and their fragments. Journal of Chromatography B,755, 37–46.

    Google Scholar 

  • Habraken, W., Habibovic, P., Epple, M., & Bohner, M. (2016). Calcium phosphates in biomedical applications: Materials for the Future? Materials Today,19, 69–87.

    Google Scholar 

  • Ignjatović, N. L., Sakač, M., Kuzminac, I., Kojić, V., Marković, S., Vasiljević-Radović, D., et al. (2018). Chitosan oligosaccharide lactate coated hydroxyapatite nanoparticles as a vehicle for the delivery of steroid drugs and the targeting of breast cancer cells. Journal of Materials Chemistry B,6, 6957–6968.

    Google Scholar 

  • Johansson, P., Barkarmo, S., Hawthan, M., Peruzzi, N., Kjellin, P., & Wennerberg, A. (2018). Biomechanical, histological, and computed X-ray tomographic analyses of hydroxyapatite coated PEEK implants in an extended healing model in rabbit. Journal of Biomedical Materials Research A,106(5), 1440–1447.

    Google Scholar 

  • Juntavee, N., Juntavee, A., & Plongniras, P. (2018). Remineralization potential of nano-hydroxyapatite on enamel and cementum surrounding margin of computer-aided design and computer-aided manufacturing ceramic restoration. International Journal of Nanomedicine,13, 2755–2765.

    Google Scholar 

  • Khan, M. A., Wu, V. M., Ghosh, S., & Uskoković, V. (2016). Gene Delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives. Journal of Colloid and Interface Science,471, 48–58.

    Google Scholar 

  • Kunz, W. (2010). Specific ion effects in colloidal and biological systems. Current Opinion in Colloid & Interface Science,15, 34–39.

    Google Scholar 

  • Lang, S. B., Tofail, S. A., Kholkin, A. L., Wojtaś, M., Gregor, M., Gandhi, A. A., et al. (2013). Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon. Scientific Reports,3, 2215.

    Google Scholar 

  • Lassaigne, M. (1847). Solubility of carbonate of lime in water containing carbonic acid. Philosophical Magazine Ser,3(30), 297–298.

    Google Scholar 

  • Lenton, S., Nylander, T., Teixeira, S. C., & Holt, C. (2015). A review of the biology of calcium phosphate sequestration with special reference to milk. Dairy Science and Technology,95, 3–14.

    Google Scholar 

  • Liu, G. X., Xue, C. B., & Zhu, P. Z. (2017). Removal of carmine from aqueous solution by carbonated hydroxyapatite nanorods. Nanomaterials,7, 137.

    Google Scholar 

  • Macewen, W. (1881). Observations concerning transplantation of bone. Illustrated by a case of inter-human osseous transplantation, whereby over two-thirds of the shaft of a humerus was restored. Proceedings of the Royal Society London,32, 232–247.

    Google Scholar 

  • Maiti, G. C., & Freund, F. (1981). Influence of fluorine substitution on the proton conductivity of hydroxyapatite. Journal of Chemical Society Dalton Transactions,4, 949–955.

    Google Scholar 

  • Manda, M. G., da Silva, L. P., Cerqueira, M. T., Pereira, D. R., Oliveira, M. B., Mano, J. F., et al. (2018). Gellan gum-hydroxyapatite composite spongy-like hydrogels for bone tissue engineering. Journal of Biomedical Materials Research A,106(2), 479–490.

    Google Scholar 

  • Mehmel, M. (1930). On the structure of apatite. Zeitschrift für Kristallographie,75, 323–331.

    Google Scholar 

  • Mehta, D., Jyothi, S., Moogi, P., Finger, W. J., & Sasaki, K. (2018). Novel treatment of in-office tooth bleaching sensitivity: A randomized, placebo-controlled clinical study. Journal of Esthetic and Restorative Dentistry,30, 254–258.

    Google Scholar 

  • Moran, L. B., Berkowitz, J. K., & Yesinowski, J. P. (1992). F-19 and P-31 magic-angle spinning nuclear-magnetic-resonance of antimony(III)-doped fluoroapatite phosphors-dopant sites and spin diffusion. Physical Review B,45, 5347–5360.

    Google Scholar 

  • Morozova, D., Möhlmann, D., & Wagner, D. (2007). Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Origins of Life and Evolution of Biospheres,37, 189–200.

    Google Scholar 

  • Nakamura, M., Hiratai, R., & Yamashita, K. (2012). Bone mineral as an electrical energy reservoir. Journal of Biomedical Materials Research A,100, 1368–1374.

    Google Scholar 

  • Narayan, R., Agarwal, T., Mishra, D., Maji, S., Mohanty, S., Mukhopadhyay, A., et al. (2017). Ectopic vascularized bone formation by human mesenchymal stem cell microtissues in a biocomposite scaffold. Colloids and Surfaces B,160, 661–670.

    Google Scholar 

  • Náray-Szabó, S. (1930). The structure of apatite (CaF)Ca4(PO4)3. Zeitschrift für Kristallographie,75, 387–398.

    Google Scholar 

  • Niederberger, M., & Colfen, H. (2006). Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Physical Chemistry Chemical Physics,8, 3271–3287.

    Google Scholar 

  • Oliva, J., De Pablo, J., Cortina, J.-L., Cama, J., & Ayora, C. (2011). Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: Column experiments. Journal of Hazardous Materials,194, 312–323.

    Google Scholar 

  • Pernal, S. P., Wu, V. M., & Uskoković, V. (2017). Hydroxyapatite as a vehicle for the selective effect of superparamagnetic iron oxide nanoparticles against human glioblastoma cells. ACS Applied Materials & Interfaces,9(45), 39283–39302.

    Google Scholar 

  • Player, T. C., & Hore, P. J. (2018). Posner qubits: Spin dynamics of entangled Ca9(PO4)6 molecules and their role in neural processing. Journal of the Royal Society, Interface,15, 20180494.

    Google Scholar 

  • Raoult, D., Drancourt, M., Azza, S., Nappez, C., Guiey, R., Rolain, J. M., et al. (2008). Nanobacteria are mineralo fetuin complexes. PLoS Pathogenesis,4(2), e41.

    Google Scholar 

  • Ratnayake, J. T. B., Mucalo, M., & Dias, G. J. (2017). Substituted hydroxyapatites for bone regeneration: A review of current trends. Journal of Biomedical Materials Research B,105, 1285–1299.

    Google Scholar 

  • Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. K. (2012). Biomaterials science: An introduction to materials in medicine. Amsterdam, NL: Elsevier Academic Press.

    Google Scholar 

  • Rigali, M., Brady, P. V., & Moore, R. (2016). Radionuclide removal by apatite. American Mineralogist,101, 2611–2619.

    Google Scholar 

  • Roscoe, H. E., & Schorlemmer, C. (1881). A treatise on chemistry. Volume I: The non-metallic elements (p. 458). London: Macmillan and Co.

    Google Scholar 

  • Roycroft, P. D., & Cuypers, M. (2015). The etymology of the mineral name ‘apatite’: A clarification. Irish Journal of Earth Sciences,33, 71–75.

    Google Scholar 

  • Saito, M., Kurosawa, Y., & Okuyama, T. (2013). Scanning electron microscopy-based approach to understand the mechanism underlying the adhesion of dengue viruses on ceramic hydroxyapatite columns. PLoS ONE,8(1), e53893.

    Google Scholar 

  • Seitz, H., Reider, W., Irsen, S., Leukers, B., & Tille, C. (2005). Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research B,74, 782–788.

    Google Scholar 

  • Stock, S. R. (2015). The mineral-collagen interface in bone. Calcified Tissue International,97, 262–280.

    Google Scholar 

  • Stoppard, T. (1993). Arcadia: A play in two acts. Los Angeles, CA: Samuel French.

    Google Scholar 

  • Suda, H., Yashima, M., Kakihana, M., & Yoshimura, M. (1995). Monoclinic ↔ hexagonal phase transition in hydroxyapatite studied by X-Ray Powder diffraction and differential scanning calorimeter techniques. Journal of Physical Chemistry,99, 6752–6754.

    Google Scholar 

  • Swift, M. W., van de Walle, C. G., & Fisher, M. P. A. (2018). Posner molecules: From atomic structure to nuclear spins. Physical Chemistry Chemical Physics,20, 12373–12380.

    Google Scholar 

  • Tofail, S. A. M., Baldisserri, C., Haverty, D., McMonagle, J. B., & Erhart, J. (2009). Pyroelectric syrface charge in hydroxyapatite ceramics. Journal of Applied Physics,106, 106104.

    Google Scholar 

  • Tolkien, J. R. R. (1954). The lord of the rings. Crown Nest, NSW: Allen & Unwin.

    Google Scholar 

  • Tománek, D. (2011). Fame on sale: Pitfalls of the ranking game. Materials Express,1(4), 355–356.

    Google Scholar 

  • Tunstall, K. T. (2004) False alarm. [Recorded by KT Tunstall] On Eye to the telescope. London, UK: Relentless Records.

  • Uskoković, V. (2012). On love in the realm of science. Technoetic Arts,10(2–3), 359–374.

    Google Scholar 

  • Uskoković, V. (2014). Chemical reactions as petite rendezvous: The use of metaphor in materials science education. Journal of Materials Education,36(1–2), 25–50.

    Google Scholar 

  • Uskoković, V. (2015a). Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Critical Reviews in Therapeutic Drug Carrier Systems,32(1), 1–59.

    Google Scholar 

  • Uskoković, V. (2015b). The role of hydroxyl channel in defining selected physicochemical peculiarities exhibited by hydroxyapatite. RSC Advances,5, 36614–36633.

    Google Scholar 

  • Uskoković, V. (2015c). When 1 + 1 > 2: Nanostructured composite materials for hard tissue engineering applications. Materials Science and Engineering C,57, 434–451.

    Google Scholar 

  • Uskoković, V. (2017). Rethinking active learning as the paradigm of our times: Towards poetization of education in the age of STEM. Journal of Materials Education,39(5–6), 241–258.

    Google Scholar 

  • Uskoković, V., & Bertassoni, L. E. (2010). Nanotechnology in dental sciences: Moving towards a finer way of doing dentistry. Materials,3(3), 1674–1691.

    Google Scholar 

  • Uskoković, V., & Desai, T. A. (2013a). Calcium phosphate nanoparticles: A future therapeutic platform for the treatment of osteomyelitis? Therapeutic Delivery,4(6), 643–645.

    Google Scholar 

  • Uskoković, V., & Desai, T. A. (2013b). Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. I. Preparation and drug release. Journal of Biomedical Materials Research A,101(5), 1416–1426.

    Google Scholar 

  • Uskoković, V., & Desai, T. A. (2014). Simultaneous bactericidal and osteogenic effect of nanoparticulate calcium phosphate powders loaded with clindamycin on osteoblasts infected with Staphylococcus aureus. Materials Science and Engineering C,37, 210–222.

    Google Scholar 

  • Uskoković, V., & Rau, J. V. (2017). Nonlinear oscillatory dynamics of the hardening of calcium phosphate cements. RSC Advances,7, 40517–40532.

    Google Scholar 

  • Uskoković, V., Tang, S., & Wu, V. M. (2018). On grounds of the memory effect in amorphous and crystalline apatite: Kinetics of crystallization and biological response. ACS Applied Materials & Interfaces,10(17), 14491–14508.

    Google Scholar 

  • Uskoković, V., & Wu, V. M. (2016). Calcium phosphate as a key material for socially responsible tissue engineering. Materials,9, 434–460.

    Google Scholar 

  • Van Lieshout, E. M. M., Van Kralingen, G. H., El-Massoudi, Y., Weinans, H., & Patka, P. (2011). Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. BMC Musculoskeletal Disorders,12, 34.

    Google Scholar 

  • Von Walter, P. (1821). Wiedereinheilung der bei der trapanation ausgebohrten knochenscheibe. Journal Chir. Augenheilkd.,2, 571.

    Google Scholar 

  • Wiles, P. (1983). Ideology, Methodology, and neoclassical economics. In A. S. Eichner (Ed.), Why Economics is not yet a science (pp. 61–89). Armonk, NY: M. E. Sharpe Inc.

    Google Scholar 

  • Winograd, T., & Flores, F. (1987). Understanding computers and cognition: A new foundations for design. Norwood, NJ: Ablex Publishing Corporation.

    Google Scholar 

  • Wopenka, B., & Pasteris, J. D. (2005). A mineralogical perspective on the apatite in bone. Materials Science and Engineering C,25, 131–143.

    Google Scholar 

  • Wu, V. M., Tang, S., & Uskoković, V. (2018). Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: The antibacterial effect. ACS Applied Materials & Interfaces,10(40), 34013–34028.

    Google Scholar 

  • Wu, V. M., & Uskoković, V. (2017). Calcium phosphate nanoparticles in drosophila melanogaster: The effects of phase composition, crystallinity and the pathway of formation. ACS Biomaterials Science and Engineering,3(10), 2348–2357.

    Google Scholar 

  • Xie, R., Hu, J., Hoffmann, O., Zhang, Y., Ng, F., Qin, T., et al. (2018). Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study. Biochimica et Biophysica Acta, General Subjects,1862(4), 936–945.

    Google Scholar 

  • Xiong, L., Wang, P., & Kopittke, P. M. (2018). Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils. Geoderma,323, 116–125.

    Google Scholar 

  • Young, J. D., Martel, J., Young, L., Wu, C. Y., Young, A., & Young, D. (2009). Putative nanobacteria represent physiological remnants and culture by-products of normal calcium homeostasis. PLoS ONE,4(2), e4417.

    Google Scholar 

  • Zhang, M. J., Liu, S. N., Xu, G., Guo, Y. N., Fu, J. N., & Zhang, D. C. (2014). Cytotoxicity and apoptosis induced by nanobacteria in human breast cancer cells. International Journal of Nanomedicine,9, 265–271.

    Google Scholar 

  • Zimmermann, E. A., & Ritchie, R. O. (2015). Bone as a structural material. Advanced Healthcare Materials,4, 1287–1304.

    Google Scholar 

  • Zuckermann, H. (1977). Scientific elite: Nobel laureates in the United States (p. 134). New York, NY: The Free Press.

    Google Scholar 

Download references

Acknowledgements

National Institutes of Health award R00-DE021416 is acknowledged for support. Quoted phrases and many of the nonquoted lines originate from the English version of Waiting for Godot (Beckett 1953). The authors thank Sergey Dorozhkin for persuading us that the 250th anniversary ought to be celebrated and all the peers who have been supportive of our attempt to bring new life into research on this fascinating material in the recent years.

Author information

Authors and Affiliations

Authors

Contributions

Per CRediT taxonomy: VW—Resources; VU—Conceptualization, Formal Analysis, Visualization, Writing.

Corresponding author

Correspondence to Vuk Uskoković.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, V., Uskoković, V. Waiting for Aπαταω: 250 Years Later. Found Sci 24, 617–640 (2019). https://doi.org/10.1007/s10699-019-09602-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-019-09602-x

Keywords

Navigation