Skip to main content

Advertisement

Log in

High-carbohydrate diet promotes the adaptation to acute hypoxia in zebrafish

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Oxygen deprivation (hypoxia) is a common challenge in water environment, which causes lack of energy and oxidative damage in organisms. Many studies have indicated a number of physiological and metabolic changes under hypoxia, but the effects of dietary nutrients on hypoxia tolerance have not been well evaluated. In the present 7-week feeding trial, we fed zebrafish with low-protein diet (LP), high-protein diet (HP), low-fat diet (LF), high-fat diet (HF), low-carbohydrate diet (LC), and high-carbohydrate diet (HC), respectively. Afterward, the resistance to acute hypoxia challenge, growth, body composition, activities of metabolic enzymes, and expressions of energy homeostasis–related genes and six hifαs genes were measured. The results indicated that only the HC diet could significantly improve the resistance to hypoxia challenge. Moreover, the HC diet feeding caused higher glycogen deposition in the liver and muscle, and these glycogens were significantly reduced after 6-h acute hypoxia challenge. Meanwhile, the lactate content in the liver and blood was increased in the HC groups. At hypoxia status, the relative mRNA expressions of the genes related to glycolysis, ATP production, insulin signaling pathway, and hif-3a (hif1al) were all significantly increased in the muscle of the HC diet–fed fish. This study revealed that high-carbohydrate diet could improve the resistance to hypoxia by activating glycolysis and hif/insulin signaling pathway in zebrafish, mainly in the muscle, to efficiently supply energy. Therefore, our results highlight the importance of dietary carbohydrate in resisting hypoxia in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Funding

This study received financial support from the National Key Research and Development Program of China (2018YFD0900400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Du.

Ethics declarations

All experiments were conducted under the Guidance Suggestions for the Care and Use of Laboratory Animals formulated by the Ministry of Science and Technology of China. This research was approved by the Committee on the Ethics of Animal Experiments of East China Normal University (F20140101).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Hu, CT., Yue, J. et al. High-carbohydrate diet promotes the adaptation to acute hypoxia in zebrafish. Fish Physiol Biochem 46, 665–679 (2020). https://doi.org/10.1007/s10695-019-00742-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00742-2

Keywords

Navigation