Skip to main content
Log in

Activity of metabolic enzymes and muscle-specific gene expression in parr and smolts Atlantic salmon Salmo salar L. of different age groups

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study was conducted to characterize the energy metabolism level and the features of muscle growth regulation during the development of Atlantic salmon (Salmo salar) inhabiting the Indera River (Kola Peninsula, Russia). The activities of aerobic and anaerobic enzymes (cytochrome c oxidase and lactate dehydrogenase) and carbohydrate metabolism enzymes (glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, and aldolase) were measured in muscle and liver tissue. Gene expression levels of myosin heavy chain (MyHC), myostatin (MSTN-1a), and myogenic regulatory factors (MRFs—MyoD1a, MyoD1b, MyoD1c, Myf5, myogenin) were measured in the white muscles of salmon parr of ages 0+, 1+, 2+, and 3+ and smolts of ages 2+ and 3+. Multidirectional changes in the activity of enzymes involved in aerobic and anaerobic energy metabolism with age were shown in the white muscles of the parr. The cytochrome c oxidase activity was higher in muscles of underyearlings (0+) and yearlings (1+) and decreased in 2+ and 3+ age groups. The activity of lactate dehydrogenase, in contrast, increased with age. The patterns of changes in expression levels of MyoD1a, MyoD1b, myogenin, MyHC, and MSTN-1a at different ages of the parr were similar. Particularly, the expression of these genes peaked in the yearling parr (1+) and then decreased in elder groups. The differences were revealed in parameters studied between the parr and smolts. The level of aerobic and anaerobic metabolism enzyme activities was higher in the white muscles of smolts than in parr. The activity of carbohydrate metabolism enzymes was decreased in the smolts’ livers. The expression levels of MyHC, MyoD1a, MyoD1b, and myogenin were lower in smolts at age 2+ compared to parr. These findings expand our knowledge of age-related and stage-related features of energy metabolism and muscle development regulation in young Atlantic salmon in their natural habitat. The results might be used for monitoring of the salmon population during restoration and rearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alami-Durante H, Wrutniak-Cabello C, Kaushik SJ, Médale F (2010) Skeletal muscle cellularity and expression of myogenic regulatory factors and myosin heavy chains in rainbow trout (Oncorhynchus mykiss): effects of changes in dietary plant protein sources and amino acid profiles. Comp Biochem Physiol A Mol Integr Physiol 156(4):561–568. doi:10.1016/j.aquaculture.2010.03.012

    Article  CAS  PubMed  Google Scholar 

  • Almeida FLA, Carvalho RF, Pinhal D, Padovani CR, Martins C, Dal Pai-Silva M (2008) Differential expression of myogenic regulatory factor MyoD in pacu skeletal muscle (Piaractus mesopotamicus Holmberg 1887: Serrasalminae, Characidae, Teleostei) during juvenile and adult growth phases. Micron 39:1306–1311. doi:10.1016/j.micron.2008.02.011

    Article  PubMed  Google Scholar 

  • Almeida FLA, Pessoti NS, Pinhal D, Padovani CR, Leitão NJ, Carvalho RF, Martins C, Portella MC, Dal Pai-Silva M (2010) Quantitative expression of myogenic regulatory factors myoD and myogenin in pacu (Piaractus mesopotamicus) skeletal muscle during growth. Micron 41:997–1004. doi:10.1016/j.micron.2010.06.012

    Article  PubMed  Google Scholar 

  • Atlantic Salmon Ecology (2011) Aas Ø, Klemetsen A, Einum S, Skurdal J (Eds). Oxford: Blackwell Publishing Ltd.

  • Bergmeyer HU (1965) Methods of enzymatic analysis. Academic Press, New York

    Google Scholar 

  • Bergmeyer HU (1983) Methods of enzymatic analysis, 3rd edn, vol. 2, Verlag Chemie, Weinheim.

  • Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Seminars in cell & developmental biology Academic Press 16(4):585–595. doi:10.1016/j.semcdb.2005.07.006

    Article  CAS  Google Scholar 

  • Biga PR, Cain KD, Hardy RW, Schelling GT, Overturf K, Roberts SB, Ott TL (2004) Growth hormone differentially regulates muscle myostatin1 and-2 and increases circulating cortisol in rainbow trout (Oncorhynchus mykiss). General and comparative endocrinology 138(1): 32-41. doi:10.1016/j.ygcen.2004.05.001

  • Bower NI, Johnston IA (2010) Paralogs of Atlantic salmon myoblast determination factor genes are distinctly regulated in proliferating and differentiating myogenic cells. Am J Phys Regul Integr Comp Phys 298(6):R1615–R1626. doi:10.1152/ajpregu.00114.2010

    CAS  Google Scholar 

  • Bower NI, Taylor RG, Johnston IA (2009) Phasing of muscle gene expression with fasting-induced recovery growth in Atlantic salmon. Front Zool 6:1. doi:10.1186/1742-9994-6-18

    Article  Google Scholar 

  • Churova MV, Meshcheryakova OV, Nemova NN, Shatunovskii MI (2010) The correlation between fish growth and several biochemical characteristics with reference to the steelhead Parasalmo mykiss Walb. Biol Bull 37(3):236–245. doi:10.1134/S1062359010030040

    Article  CAS  Google Scholar 

  • Churova MV, Meshcheryakova OV, Veselov AE, Nemova NN (2015) Activity of enzymes involved in the energy and carbohydrate metabolism and the level of some molecular-genetic characteristics in young salmons (Salmo salar L.) with different age and weight. Russ J Dev Biol 5:254–262. doi:10.1134/S1062360415050021

    Article  Google Scholar 

  • Davies R, Moyes CD (2007) Allometric scaling in centrarchid fish: origins of intra-and inter-specific variation in oxidative and glycolytic enzyme levels in muscle. J Exp Biol 210(21):3798–3804. doi:10.1242/jeb.003897

    Article  CAS  PubMed  Google Scholar 

  • Dhillon RS, Esbaugh AJ, Wang YS, Tufts BL (2009) Characterization and expression of a myosin heavy–chain isoform in juvenile walleye Sander vitreus. J Fish Biol 75(5):1048–1062. doi:10.1111/j.1095-8649.2009.02376.x

    Article  CAS  PubMed  Google Scholar 

  • Gabillard JC, Biga PR, Rescan PY, Seiliez I (2013) Revisiting the paradigm of myostatin in vertebrates: insights from fishes. Gen Comp Endocrinol 194:45–54 http://dx.doi.org/10.1016/j.ygcen.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  • Garikipati DK, Rodgers BD (2012) Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation: evidence for endocrine-regulated transcript processing. J Endocrinol 215(1):177–187. doi:10.1530/JOE-12-0260

    Article  CAS  PubMed  Google Scholar 

  • Garikipati DK, Gahr SA, Rodgers BD (2006) Identification, characterization, and quantitativeexpression analysis of rainbow trout myostatin-1a and myostatin-1b genes. J Endocrinol 190:879–888. doi:10.1677/joe.1.06866

    Article  CAS  PubMed  Google Scholar 

  • Gauthier C, Campbell P, Couture P (2008) Physiological correlates of growth and condition in the yellow perch (Perca flavescens). Comparative Biochemistry and Physiology: Part A 151:526–532. doi:10.1016/j.cbpa.2008.07.010

    Article  Google Scholar 

  • Hevroy EM, Jordal A-EO, Hordvik I, Espe M, Hemre G-I, Olsvik PA (2006) Myosin heavy chain mRNA expression correlates higher with muscle protein accretion than growth in Atlantic salmon, Salmo salar. Aquaculture 252:453–461. doi:10.1016/j.aquaculture.2005.07.003

    Article  CAS  Google Scholar 

  • Houlihan DF, Mathers EM, Foster A (1993) Biochemical correlates of growth rate in fish. In Rankin JC, Jensen FB (eds). Fish Ecophysiology. London UK, pp 45–71. doi:10.1007/978-94-011-2304-4_2

  • Imsland AK, Le Francois NR, Lammare SG, Ditlecadet D, Sigurosson S, Foss A (2006) Myosin expression levels and enzyme activity in juvenile spotted wolfish (Anarhichas minor) muscle: a method for monitoring growth rates. Can J Fish Aquat Sci 63:1959–1967. doi:10.1139/F06-091

    Article  CAS  Google Scholar 

  • Johansen KA, Overturf K (2005) Quantitative expression analysis of genes affecting muscle growth during development of rainbow trout (Oncorhynchus mykiss). Mar Biotechnol 7(6):576–587

    Article  CAS  PubMed  Google Scholar 

  • Johansen KA, Overturf K (2006) Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeeding in rainbow trout. Comp Biochem Physiol B: Biochem Mol Biol 144(1):119–127. doi:10.1016/j.cbpb.2006.02.001

    Article  Google Scholar 

  • Johnston IA (2006) Environment and plasticity of myogenesis in teleost fish. J Exp Biol 209:2249–2264. doi:10.1242/jeb.02153

    Article  CAS  PubMed  Google Scholar 

  • Johnston IA, McLay HA, Abercromby M, Robins D (2000) Early thermal experience has different effects on growth and muscle fibre recruitment in spring-and autumn-running Atlantic salmon populations. J Exp. Biol 203(17): 2553-2564

  • Johnston IA, Macqueen DJ, Watabe S (2008) Molecular biotechnology of development and growth in fish muscle. In: Tsukamoto K, Kawamura T, Takeuchi T, Beard Jr TD, Kaiser MJ (eds) Fisheries for Global Welfare and Environment: Memorial book of the 5th World Fisheries Congress. Terrapub, Tokyo, pp 241–262

    Google Scholar 

  • Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G (2003) Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286:263–275. doi:10.1016/S0014-4827(03)00074-0

    Article  CAS  PubMed  Google Scholar 

  • Kantserova NP, Lysenko LA, Nemova NN (2017) Protein degradation in the skeletal muscles of parr and smolt Atlantic salmon Salmo salar L. Biology bulletin Biology 44(1):55–60

    Article  CAS  Google Scholar 

  • Koedijk RM, Le François NR, Blier PU, Foss A, Folkvord A, Ditlecadet D, Lamarre SG, Stefansson SO, Imsland AK (2010) Ontogenetic effects of diet during early development on growth performance, myosin mRNA expression and metabolic enzyme activity in Atlantic cod juveniles reared at different salinities. Comp Biochem Physiol A Mol Integr Physiol 156(1):102–109. doi:10.1016/j.cbpa.2010.01.007

    Article  PubMed  Google Scholar 

  • Leonard JB, McCormick SD (2001) Metabolic enzyme activity during smolting in stream-and hatchery-reared Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 58(8):1585–1593. doi:10.1139/f01-105

    Article  CAS  Google Scholar 

  • Macqueen DJ, Johnston IA (2006) A novel salmonid myoD gene is distinctly regulated during development and probably arose by duplication after the genome tetraploidization. FEBS Lett 580:4996–5002. doi:10.1016/j.febslet.2006.08.016

    Article  CAS  PubMed  Google Scholar 

  • Macqueen DJ, Johnston IA (2008) An update on MyoD evolution in teleosts and a proposed consensus nomenclature to accommodate the tetraploidization of different vertebrate genomes. PLoS One 3(2):e1567. doi:10.1371/journal.pone.0001567

    Article  PubMed  PubMed Central  Google Scholar 

  • Macqueen DJ, Robb D, Johnston IA (2007) Temperature influences the coordinated expression of myogenic regulatory factors during embryonic myogenesis in Atlantic salmon (Salmo salar L.) J Exp Biol 210:2781–2794. doi:10.1242/jeb.006981

    Article  CAS  PubMed  Google Scholar 

  • Maxime V, Boeuf G, Pennec JP, Peyraud C (1989) Comparative study of the energetic metabolism of Atlantic salmon (Salmo salar) parr and smolts. Aquaculture 82(1):163–171. doi:10.1016/0044-8486(89)90405-5

    Article  Google Scholar 

  • McCormick SD (2013) Smolt physiology and endocrinology. Fish physiology 32:199–251. doi:10.1016/B978-0-12-396951-4.00005-0

    Article  Google Scholar 

  • Mizuno S, Urabe H, Aoyama T, Omori H, Iijima A, Kasugai K, Torao M, Misaka N, Koide N, Ueda H (2012) Changes in activity and transcript level of liver and gill metabolic enzymes during smoltification in wild and hatchery-reared masu salmon (Oncorhynchus masou). Aquaculture 362:109–120. doi:10.1016/j.aquaculture.2010.10.034

    Article  Google Scholar 

  • Montfort J, Le Cam A, Gabillard JC, Rescan PY (2016) Gene expression profiling of trout regenerating muscle reveals common transcriptional signatures with hyperplastic growth zones of the post-embryonic myotome. BMC Genomics 17(1):810. doi:10.1186/s12864-016-3160-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Nebo C, Portella MC, Carani FR, de Almeida FLA, Padovani CR, Carvalho RF, Dal-Pai-Silva M (2013) Short periods of fasting followed by refeeding change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol B: Biochem Mol Biol 164(4):268–274. doi:10.1016/j.cbpb.2013.02.003

    Article  CAS  Google Scholar 

  • Østbye T, Galloway T, Nielsen C, Gabestad I, Bardal T, Andersen Ø (2001) The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur J Biochem 268(20):5249–5257. doi:10.1046/j.0014-2956.2001.02456.x

    Article  PubMed  Google Scholar 

  • Overturf K, Gaylord TG (2009) Determination of relative protein degradation activity at different life stages in rainbow trout (Oncorhynchus mykiss).Comp Biochem Physiol Part B: Biochem Mol Biol, 152(2): 150-160. doi:10.1016/j.cbpb.2008.10.01210.1016/j.cbpb.2008.10.012

  • Overturf K, Hardy R (2001) Myosin expression levels in trout muscle: a new method of monitoring specific growth rates for rainbow trout Oncorhynchus mykiss (Walbaum) on varied planes of nutrition. Aquat Res 32:315–322. doi:10.1046/j.1365-2109.2001.00582.x

    Article  CAS  Google Scholar 

  • Overturf K, Sakhrani D, Devlin RH (2010) Expression profile for metabolic and growth-related genes in domesticated and transgenic coho salmon (Oncorhynchus kisutch) modified for increased growth hormone production. Aquaculture 307(1):111–122. doi:10.1016/j.aquaculture.2010.06.010

    Article  CAS  Google Scholar 

  • Ozernyuk ND (2011) Adaptive specific features of energy metabolism in fish ontogenesis. Russ J Dev Biol 42(3):201–205. doi:10.1134/S1062360411030131

    Article  Google Scholar 

  • Pavlov DS, Meshcheryakova OV, Veselov AE, Nemova NN, Lupandin AI (2007) Parameters of energy metabolism in juveniles of Atlantic salmon Salmo salar living in the mainstream and in the tributary of the Varzuga River (the Kola Peninsula). J Ichthyol 47(9):774–781. doi:10.1134/S003294520709010X

    Article  Google Scholar 

  • Pavlov DS, Nefedova ZA, Veselov AE, Nemova NN, Ruokolainen TR, Vasil’eva OB, Ripatti PO (2009) Age dynamics of lipid status of juveniles of Atlantic salmon (Salmo salar L.) from the Varzuga River. J Ichtiology 49(11):1073–1080. doi:10.1134/S003294520911006X

    Article  Google Scholar 

  • Rescan PY, Gauvry L, Paboeuf G (1995) A gene with homology to myogenin is expressed in developing myotomal musculature of the rainbow trout and in vitro during the conversion of myosatellite cells to myotubes. FEBS Lett 362(1):89–92. doi:10.1016/0014-5793(95)00215-U

    Article  CAS  PubMed  Google Scholar 

  • Rescan PY, Rallière C, Lebret V, Fretaud M (2015) Analysis of muscle fibre input dynamics using a myog: GFP transgenic trout model. J Exp Biol 218(8):1137–1142. doi:10.1242/jeb.113704

    Article  PubMed  Google Scholar 

  • Seiliez I, Sabin N, Gabillard JC (2012) Myostatin inhibits proliferation but not differentiation of trout myoblasts. Mol Cell Endocrinol 351(2):220–226. doi:10.1016/j.mce.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  • Sheridan MA, Woo N, Bern HA (1985) Changes in the rates of glycogenesis, glycogenolysis, lipogenesis, and lipolysis in selected tissues of the coho salmon (Oncorhynchus kisutch) associated with parr-smolt transformation. J Exp Zool 236(1):35–44. doi:10.1002/jez.1402360106

    Article  CAS  PubMed  Google Scholar 

  • Shustov YA, Belyakova EA (2012) Comparative study on the feeding of parrs and smolts of the Atlantic salmon (Salmo salar L.) in the subarctic Varzuga River basin. Russ J Ecol 43(6):462–465. doi:10.1134/S106741361205013X

    Article  CAS  Google Scholar 

  • Smith L (1955) Spectrophotometric assay of cytochrome c oxidase. Methods in Biochem Analysis 2:427–434. doi:10.1002/9780470110188.ch13

    CAS  Google Scholar 

  • Somero GN, Childress JJ (1980) A violation of the metabolism-size scaling paradigm: activities of glycolytic enzymes in muscle increase in larger size fish. Physiol Zool 53:322–337. doi:10.1086/physzool.53.3.30155794

    Article  CAS  Google Scholar 

  • Stefansson SO, Björnsson BT, Ebbesson LOE, McCormick SD (2008) Smoltification. In: Finn RN, Kapoon BG (eds) Fish Larval Physiology. Science Publishers, Enfield, pp 639–681

    Google Scholar 

  • Treberg JR, Lewis JM, Driedzic WR (2002) Comparison of liver enzymes in osmerid fishes: key differences between a glycerol accumulating species, rainbow smelt (Osmerus mordax), and a species that does not accumulate glycerol, capelin (Mallotus villosus). Comp Biochem Physiol A Mol Integr Physiol 132:433–438. doi:10.1016/S1095-6433(02)00083-1

    Article  CAS  PubMed  Google Scholar 

  • Valente LM, Bower NI, Johnston IA (2012) Postprandial expression of growth-related genes in Atlantic salmon (Salmo salar L.) juveniles fasted for 1 week and fed a single meal to satiation. Br J Nutr 108(12):2148–2157. doi:10.1017/S0007114512000396

    Article  CAS  PubMed  Google Scholar 

  • Vassault A (1983) Lactate dehydrogenase. In: Bergmeyer HU (ed) Methods of Enzymatic Analysis. Vol. 3. Weinheim: Verlag Chemie, pp 118–126

  • Watabe S (2001) Myogenic regulatory factors. In: Johnston IA (ed) Muscle Development and Growth. Acad. Press, London, pp 19–41. doi:10.1016/S1546-5098(01)18003-9

    Chapter  Google Scholar 

  • Watabe S, Ikeda D (2006) Diversity of the pufferfish (Takifugu rubripes) fast skeletal myosin heavy chain genes. Comp Biochem Physiol 1D:28–34. doi:10.1016/j.cbd.2005.12.001

    CAS  Google Scholar 

  • Wendt CAG, Saunders RL (1973) Changes in carbohydrate metabolism in young Atlantic salmon in response to various forms of stress. Int At. Salmon Found Spec Publ Ser 4: 55-82

Download references

Acknowledgements

The study was supported by the grant of Russian Science Foundation (project no. 14-24-00102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria V. Churova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churova, M.V., Meshcheryakova, O.V., Veselov, A.E. et al. Activity of metabolic enzymes and muscle-specific gene expression in parr and smolts Atlantic salmon Salmo salar L. of different age groups. Fish Physiol Biochem 43, 1117–1130 (2017). https://doi.org/10.1007/s10695-017-0357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-017-0357-0

Keywords

Navigation