Skip to main content
Log in

Developmental changes in digestive enzyme activity in American shad, Alosa sapidissima, during early ontogeny

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In order to assess the digestive physiological capacity of the American shad Alosa sapidissima and to establish feeding protocols that match larval nutritional requirements, we investigated the ontogenesis of digestive enzymes (trypsin, amylase, lipase, pepsin, alkaline phosphatase, and leucine aminopeptidase) in larvae, from hatching to 45 days after hatching (DAH). We found that all of the target enzymes were present at hatching, except pepsin, which indicated an initial ability to digest nutrients and precocious digestive system development. Trypsin rapidly increased to a maximum at 14 DAH. Amylase sharply increased until 10 DAH and exhibited a second increase at 33 DAH, which coincided with the introduction of microdiet at 30 DAH, thereby suggesting that the increase was associated with the microdiet carbohydrate content. Lipase increased until 14 DAH, decreased until 27 DAH, and then increased until 45 DAH. Pepsin was first detected at 27 DAH and then sharply increased until 45 DAH, which suggested the formation of a functional stomach. Both alkaline phosphatase and leucine aminopeptidase markedly increased until 18 DAH, which indicated intestinal maturation. According to our results, we conclude that American shad larvae possess the functional digestive system before mouth opening, and the significant increases in lipase, amylase, pepsin, and intestinal enzyme activities between 27 and 33 DAH suggest that larvae can be successfully weaned onto microdiets around this age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez-Gonzalez CA, Cervantes-Trujano M, Tovar-Ramirez D, Conklin D, Nolasco H, Gisbert E, Piedrahita R (2005) Development of digestive enzymes in california halibut Paralichthys californicus larvae. Fish Physiol Biochem 31:83–93

    CAS  Google Scholar 

  • Alvarez-González CA, Moyanolópez FJ, Civeracerecedo R, Carrascochávez V, Ortizgalindo JL, Dumas S (2009) Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus. I: biochemical analysis. Fish Physiol Biochem 34:373–384

    Article  Google Scholar 

  • Anson ML (1938) The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J Gen Physiol 22:79–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asgari R, Rafiee G, Eagderi S, Noori F, Agh N, Poorbagher H, Gisbert E (2013) Ontogeny of the digestive enzyme activities in hatchery produced Beluga (Huso huso). Aquaculture 416:33–40

    Article  Google Scholar 

  • Babaei SS, Kenari AA, Nazari R, Gisbert E (2011) Developmental changes of digestive enzymes in persian sturgeon (Acipenser persicus) during larval ontogeny. Aquaculture 318:138–144

    Article  CAS  Google Scholar 

  • Bernfeld P (1951) Amylases (alpha) and (beta). In: Colowick S, Kaplan N (eds) Methods in enzymology, vol 1. Academic Press, New York, pp 149–158

    Google Scholar 

  • Bessey OA, Lowry OH, Brock MJ (1946) A method of rapid coloric method for determination of alkaline phosphatase in five cubic millimeters of serum. J Biol Chem 164:321–329

    CAS  PubMed  Google Scholar 

  • Bi YH, Chen XW (2011) Mitochondrial genome of the American shad Alosa sapidissima. Mitochondrial DNA 22:9–11

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buchet V, Infante JZ, Cahu CL (2000) Effect of lipid level in a compound diet on the development of red drum (Sciaenops ocellatus) larvae. Aquaculture 184:339–347

    Article  CAS  Google Scholar 

  • Buddington RK, Diamond JM (1989) Ontogenetic development of intestinal nutrient transporters. Annu Rev Physiol 51:601–617

    Article  CAS  PubMed  Google Scholar 

  • Cahu CL, Zambonino Infante JL (1994) Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comp Biochem Physiol A Physiol 109:213–222

    Article  Google Scholar 

  • Cahu CL, Zambonino-Infante JL (2001) Substitution of live food by formulated diets in marine fish larvae. Aquaculture 200:161–180

    Article  Google Scholar 

  • Cara JB, Moyano FJ, Cárdenas S, Fernández-Díaz C, Yúfera M (2003) Assessment of digestive enzyme activities during larval development of white bream. J Fish Biol 63:48–58

    Article  CAS  Google Scholar 

  • Chen BN, Qin JG, Kumar MS, Hutchinson WG, Clarke SM (2006) Ontogenetic development of digestive enzymes in yellowtail kingfish Seriola lalandi larvae. Aquaculture 260:264–271

    Article  CAS  Google Scholar 

  • Comabella Y, Mendoza R, Aguilera C, Carrillo O, Hurtado A, García-Galano T (2006) Digestive enzyme activity during early larval development of the Cuban gar Atractosteus tristoechus. Fish Physiol Biochem 32:147–157

    Article  CAS  Google Scholar 

  • Crane RK, Boge G, Rigal A (1979) Isolation of brush border membranes in vesicular form from the intestinal spiral valve of the small dogfish (Scyliorhinus canicula). Biochim Biophys Acta (BBA) Biomembr 554:264–267

    Article  CAS  Google Scholar 

  • Cushman E, Tarpey C, Post B, Ware K, Darden T (2012) Genetic characterization of American shad in the Edisto River, South Carolina, and initial evaluation of an experimental stocking program. Trans Am Fish Soc 141:1338–1348

    Article  Google Scholar 

  • Darias MJ, Murray HM, Gallant JW, Astola A, Douglas SE, Yúfera M (2006) Characterization of a partial α-amylase clone from red porgy (Pagrus pagrus): expression during larval development. Comp Biochem Physiol B Biochem Mol Biol 143:209–218

    Article  CAS  PubMed  Google Scholar 

  • Dettlaff TA, Ginsburg AS, Schmalhausen OI (1993) Development of prelarvae, Sturgeon Fishes. Developmental Biology and Aquaculture. Springer Ed, Berlin, Germany

  • Diaz JP, Mani-Ponset L, Blasco C, Connes R (2002) Cytological detection of the main phases of lipid metabolism during early post-embryonic development in three teleost species: Dicentrarchus labrax, Sparus aurata and Stizostedion lucioperca. Aquat Living Resour 15:169–178

    Article  Google Scholar 

  • Díaz M, Moyano FJ, Garcia-Carreno FL, Alarcón FJ, Sarasquete MC (1997) Substrate-SDS-PAGE determination of protease activity through larval development in sea bream. Aquacult Int 5:461–471

    Article  Google Scholar 

  • Erlanger BF, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  CAS  PubMed  Google Scholar 

  • Farhoudi A, Kenari AMA, Nazari RM, Makhdoomi CH (2013) Changes of digestive enzymes activity in common carp (Cyprinus carpio) during larval ontogeny. Iran J Fish Sci 12:320–334

    Google Scholar 

  • Faulk CK, Holt GJ (2009) Early weaning of southern flounder, Paralichthys lethostigma, larvae and ontogeny of selected digestive enzymes. Aquaculture 296:213–218

    Article  CAS  Google Scholar 

  • Feng S, Li W, Lin H (2008) Characterization and expression of the pepsinogen C gene and determination of pepsin-like enzyme activity from orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol B Biochem Mol Biol 149:275–284

    Article  PubMed  Google Scholar 

  • Gao XQ, Hong L, Liu ZF, Guo ZL, Wang YH, Lei JL (2015a) The definition of point of no return of larvae and feeding characteristics of Alosa sapidissima larvae and juvenile. J Fish China 39:392–400

    Google Scholar 

  • Gao XQ, Hong L, Liu ZF, Guo ZL, Wang YH, Lei JL (2015b) An integrative study of larval organogenesis of american shad Alosa sapidissima, in histological aspects. Chin J Oceanol Limnol 33:1–17

    Article  CAS  Google Scholar 

  • Gao XQ, Hong L, Liu ZF, Guo ZL, Wang YH, Lei JL (2015c) The study of allometric growth pattern of American shad larvae and juveniles, Alosa sapidissima. Acta Hydrobiol Sin 39:368–643

    Google Scholar 

  • German DP, Horn MH, Gawlicka A (2004) Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiol Biochem Zool 77:789–804

    Article  CAS  PubMed  Google Scholar 

  • Gisbert E, Giménez G, Fernández I, Kotzamanis Y, Estévez A (2009) Development of digestive enzymes in common dentex, Dentex dentex, during early ontogeny. Aquaculture 287:381–387

    Article  CAS  Google Scholar 

  • Hong XY, Zhu XP, Chen KC, Pan DB, Li KB (2013) Ontogenetic development of the digestive tract in larvae of american shad. North Am J Aquac 75:220–227

    Article  Google Scholar 

  • Infante JZ, Cahu CL (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol C Toxicol Pharmacol 130:477–487

    Article  Google Scholar 

  • Johnson JH, Dropkin DS (1996) Feeding ecology of larval and juvenile american shad (Alosa sapidissima) in a small pond. J Appl Ichthyol 12:9–13

    Article  Google Scholar 

  • Kolkovski S (2001) Digestive enzymes in fish larvae and juveniles—implications and applications to formulated diets. Aquaculture 200:181–201

    Article  CAS  Google Scholar 

  • Koven W, Kolkovski S, Hadas E, Gamsiz K, Tandler A (2001) Advances in the development of microdiets for gilthead seabream, Sparus aurata: a review. Aquaculture 194:107–121

    Article  CAS  Google Scholar 

  • Kvåle A, Mangor-Jensen A, Moren M, Espe M, Hamre K (2007) Development and characterisation of some intestinal enzymes in Atlantic cod (Gadus morhua L.) and Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Aquaculture 264:457–468

    Article  Google Scholar 

  • Lazo JP, Holt GJ, Arnold CR (2000) Ontogeny of pancreatic enzymes in larval red drum Sciaenops ocellatus. Aquac Nutr 6:183–192

    Article  CAS  Google Scholar 

  • Lazo JP, Mendiza R, Holt GJ, Aguilera C, Arnold CR (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265:194–205

    Article  CAS  Google Scholar 

  • Lazo JP, Darias MJ, Gisbert E (2011) Ontogeny of the digestive tract. In: Holt GJ (ed) Larval fish nutrition. Wiley, West Sussex, pp 3–46

    Chapter  Google Scholar 

  • Limburg KE, Hattala KA, Kahnle A (2003) American shad in tis native range. In: Limburg KE, Waldman JR (eds). Biodiversity, status, and conservation of the world`s shads. American Fisheries Society Symposium 35, Bethesda Maryland pp 125–140

  • López-Ramírez G, Cuenca-Soria CA, Alvarez-González CA, Tovar-Ramírez D, Ortiz-Galindo JL, Perales-García N (2011) Development of digestive enzymes in larvae of mayan cichlid Cichlasoma urophthalmus. Fish Physiol Biochem 37:197–208

    Article  PubMed  Google Scholar 

  • Ma H, Cahu C, Zambonino-Infante JL, Yu H, Duan Q, Le Gall M, Mai K (2005) Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea). Aquaculture 245:239–248

    Article  CAS  Google Scholar 

  • Ma Z, Qin JG, Hutchinson W, Chen BN, Song L (2014a) Responses of digestive enzymes and body lipids to weaning times in yellowtail kingfish Seriola lalandi, (valenciennes, 1833) larvae. Aquac Res 45:973–982

    Article  CAS  Google Scholar 

  • Ma Z, Guo H, Zheng P, Wang L, Jiang S, Qin JG (2014b) Ontogenetic development of digestive functionality in golden pompano Trachinotus ovatus, (linnaeus 1758). Fish Physiol Biochem 40:1157–1167

    CAS  PubMed  Google Scholar 

  • Maroux S, Louvard D, Barath J (1973) The aminopeptidase from hog intestinal brush border. Biochim Biophys Acta (BBA) Enzymol 321:282–295

    Article  CAS  Google Scholar 

  • Martínez-Lagos R, Tovar-Ramírez D, Gracia-López V, Lazo JP (2014) Changes in digestive enzyme activities during larval development of leopard grouper (Mycteroperca rosacea). Fish Physiol Biochem 40:773–785

    Article  PubMed  Google Scholar 

  • Moguel-Hernández I, Peña R, Nolasco-Soria H, Dumas S, Zavala-Leal I (2014) Development of digestive enzyme activity in spotted rose snapper, Lutjanus guttatus (Steindachner, 1869) larvae. Fish Physiol Biochem 40:839–848

    Article  PubMed  Google Scholar 

  • Morais S, Cahu C, Zambonino-Infante JL, Robin J, Rønnestad I, Dinis MT, Conceição LEC (2004) Dietary TAG source and level affect performance and lipase expression in larval sea bass (Dicentrarchus labrax). Lipids 39:449–458

    Article  CAS  PubMed  Google Scholar 

  • Morais S, Caballero MJ, Conceição LEC, Izquierdo MS, Dinis MT (2006) Dietary neutral lipid level and source in senegalese sole (Solea senegalensis) larvae: effect on growth, lipid metabolism and digestive capacity. Comp Biochem Physiol B Biochem Mol Biol 144:57–69

    Article  CAS  PubMed  Google Scholar 

  • Moyano FJ, Diaz M, Alarcon FJ, Sarasquete MC (1996) Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15:121–130

    Article  CAS  PubMed  Google Scholar 

  • Napora-Rutkowski L, Kamaszewski M, Bielawski W, Ostaszewska T, Wegner A (2009) Effects of starter diets on pancreatic enzyme activity in juvenile sterlet (Acipenser ruthenus). Isr J Aquac Bamidgeh 61:143–150

    Google Scholar 

  • Nazemroaya S, Yazdanparast R, Nematollahi MA, Farahmand H, Mirzadeh Q (2015) Ontogenetic development of digestive enzymes in sobaity sea bream Sparidentex hasta larvae under culture condition. Aquaculture 448:545–551

    Article  CAS  Google Scholar 

  • Øie G, Reitan KI, Evjemo JO, Støttrup JS, Olsen Y (2011) Ontogeny of the digestive tract. In: Holt GJ (ed) Larval fish nutrition. Wiley, West Sussex, pp 307–334

    Chapter  Google Scholar 

  • Pedersen BH, Andersen KP (1992) Induction of trypsinogen secretion in herring larvae (Clupea harengus). Mar Biol 112:559–565

    Article  CAS  Google Scholar 

  • Peng JS, Bai C, Tao HQ, Li J (2012) A experiment on cultivation of Alosa sapidissima fries with fresh water and sea water. J Guangdong Ocean Univ 32:97–100

    Google Scholar 

  • Péres A, Cahu CL, Infante JZ, Le Gall MM, Quazuguel P (1996) Amylase and trypsin responses to intake of dietary carbohydrate and protein depend on the developmental stage in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 15:237–242

    Article  PubMed  Google Scholar 

  • Pradhan PK, Jena J, Mitra G, Sood N, Gisbert E (2013) Ontogeny of the digestive enzymes in butter catfish Ompok bimaculatus, (Bloch) larvae. Fish Physiol Biochem 38:1601–1617

    Article  Google Scholar 

  • Rainuzzo JR, Reitan KI, Olsen Y (1997) The significance of lipids at early stages of marine fish: a review. Aquaculture 155:103–115

    Article  CAS  Google Scholar 

  • Ribeiro L, Zambonino-Infante JL, Cahu CL, Dinis MT (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 179:465–473

    Article  CAS  Google Scholar 

  • Ribeiro L, Couto A, Olmedo M, Álvarez-Blázquez B, Linares F, Valente LMP (2008) Digestive enzyme activity at different developmental stages of blackspot seabream, Pagellus bogaraveo, (Brunnich 1768). Aquac Res 39:339–346

    Article  CAS  Google Scholar 

  • Rønnestad I, Morais S (2007) Digestion. In: Fin RN, Kapoor BG (eds) Fish larval physiology. Science Publishers, Enfield, pp 201–262

    Google Scholar 

  • Rønnestad I, Yúfera M, Ueberschär B, Ribeiro L, Sæle Ø, Boglione C (2013) Feeding behaviour and digestive physiology in larval fish: current knowledge and gaps and bottlenecks in research. Rev Aquac 5:S59–S98

    Article  Google Scholar 

  • Suzer C, Fιrat K, Saka Ş (2006) Ontogenic development of the digestive enzymes in common pandora, Pagellus erythrinus L. larvae. Aquac Res 37:1565–1571

    Article  Google Scholar 

  • Suzer C, Aktülün S, Çoban D, Kamaci HO, Saka Ş, Fırat K, Alpbaz A (2007a) Digestive enzyme activities in larvae of sharpsnout seabream (Diplodus puntazzo). Comp Biochem Physiol A Mol Integr Physiol 148:470–477

    Article  PubMed  Google Scholar 

  • Suzer C, Kamaci HO, Coban D, Saka Ş, Firat K, Özkara B, Özkara A (2007b) Digestive enzyme activity of the red porgy (Pagrus pagrus, L.) during larval development under culture conditions. Aquac Res 38:1778–1785

    Article  CAS  Google Scholar 

  • Suzer C, Kamacı HO, Çoban D, Yıldırım Ş, Fırat K, Saka Ş (2013) Functional changes in digestive enzyme activities of meagre (Argyrosomus regius; Asso, 1801) during early ontogeny. Fish Physiol Biochem 39:967–977

    Article  CAS  PubMed  Google Scholar 

  • Sveinsdóttir H, Thorarensen H, Gudmundsdóttir Á (2006) Involvement of trypsin and chymotrypsin activities in Atlantic cod (Gadus morhua) embryogenesis. Aquaculture 260:307–314

    Article  Google Scholar 

  • Tong XH, Xu SH, Liu QH, Li J, Xiao ZZ, Ma DY (2012) Digestive enzyme activities of turbot (Scophthalmus maximus L.) during early developmental stages under culture condition. Fish Physiol Biochem 38:715–724

    Article  CAS  PubMed  Google Scholar 

  • Ueberschär B (1993) Measurement of proteolytic enzyme activity: significance and application in larval fish research. In: Walther BT, Fyhn HJ (eds) Physiological and biochemical aspects of fish development. University of Bergen, Norway, pp 233–239

    Google Scholar 

  • Upton SA, Walther BD, Thorrold SR, Olney JE (2012) Use of a natural isotopic signature in otoliths to evaluate scale-based age determination for American Shad. Mar Coast Fish 4:346–357

    Article  Google Scholar 

  • Uscanga-Martínez A, Perales-García N, Álvarez-González CA, Moyano FJ, Tovar-Ramírez D, Gisbert GE (2011) Changes in digestive enzyme activity during initial ontogeny of bay snook Petenia splendida. Fish Physiol Biochem 37:667–680

    Article  PubMed  Google Scholar 

  • Versaw WK, Cuppett SL, Winters DD, Williams LE (1989) An improved colorimetric assay for bacterial lipase in nonfat dry milk. J Food Sci 54:1557–1558

    Article  CAS  Google Scholar 

  • Yúfera M, Darias MJ (2007) The onset of exogenous feeding in marine fish larvae. Aquaculture 268:53–63

    Article  Google Scholar 

  • Zambonino-Infante JL, Cahu CL (1994) Influence of diet on pepsin and some pancreatic enzymes in sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol A Physiol 109:209–212

    Article  Google Scholar 

  • Zambonino-Infante JL, Gisbert E, Sarasquete C, Navarro I, Gutiérrez J, Cahu CL (2009) Ontogeny and physiology of the digestive system of marine fish larvae. In: Cyrino JEO, Bureau D, Kapoor BG (eds) Feeding and digestive functions of fish. Science Publishers Inc, Enfield, USA, pp 277–348

    Google Scholar 

  • Zhang CX, Xu GC, Xu P, Zheng JL, Gu RB (2010) Morphological development and growth of American shad (Alosa sapidissima) at larvae, fry and juvenile stages. J Fish Sci China 17:1227–1234

    Google Scholar 

  • Zouiten D, Khemis IB, Besbes R, Cahu C (2008) Ontogeny of the digestive tract of thick lipped grey mullet (Chelon labrosus) larvae reared in ‘‘mesocosms’’. Aquaculture 279:166–172

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Qingdao Postdoctoral Application Research Project (Q51201611) and State Level Commonweal Project of Research Institutes (20603022015005). We are grateful to the Jiangsu Zhongyang Group for providing the larvae used in the present study and to the Yellow Sea Fisheries Research Institute for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XQ., Liu, ZF., Guan, CT. et al. Developmental changes in digestive enzyme activity in American shad, Alosa sapidissima, during early ontogeny. Fish Physiol Biochem 43, 397–409 (2017). https://doi.org/10.1007/s10695-016-0295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0295-2

Keywords

Navigation