Skip to main content
Log in

Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

For rainbow trout Oncorhynchus mykiss, high temperature is a major abiotic stress that limits its growth and productivity. In this study, spleen macrophage respiratory burst (RB), serum superoxide dismutase (SOD), serum malondialdehyde (MDA) and mRNA expression of the SERPINH1 (HSP47) gene in different tissues (liver, spleen, head kidney and heart) were measured in unstressed (18 °C) and heat-stressed (25 °C) fish. Spleen macrophage RB activity, serum SOD activity and MDA content all increased significantly (P < 0.05) during heat shock, and peaked at 8, 12 and 4 h, respectively. SERPINH1 mRNA expression responded in a time- and tissue-specific manner to heat stress, which was mainly reflected in the significant up-regulation in all tissues (P < 0.05) and greater expression in the liver than the other tissues (P < 0.05). During the heat-shock recovery period, the MDA content returned to the unstressed level. These results indicate that heat shock causes cell injury, induces oxidative damage and promotes SERPINH1 mRNA expression, which plays an important protective function during heat stress in O. mykiss. In practice, close attention should be given to temperature changes in O. mykiss production to reduce the effects of high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amenomori M, Mukae H, Sakamoto N, Kakugawa T, Hayashi T, Hara A, Hara S, Fujita H, Ishimoto H, Ishimatsu Y, Nagayasu T, Kohno S (2010) HSP47 in lung fibroblasts is a predictor of survival in fibrotic nonspecific interstitial pneumonia. Resp Med 104:895–901. doi:10.1016/j.rmed.2010.01.011

    Article  Google Scholar 

  • Bagnyukova TV, Danyliv SI, Zin’ko OS, Lushchak VI (2007) Heat shock induces oxidative stress in rotan Perccottus glenii tissues. J Therm Biol 32:255–260. doi:10.1016/j.jtherbio.2007.01.014

    Article  CAS  Google Scholar 

  • Bahrndorff S, Mariën J, Loeschcke V, Ellers J (2009) Dynamics of heat-induced thermal stress resistance and Hsp70 expression in the springtail, Orchesella cincta. Funct Ecol 23:233–239. doi:10.1111/j.1365-2435.2009.01541.x

    Article  Google Scholar 

  • Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function, and applications of superoxide dismutase. Crc Crit Rev Biochem Mol 22:111–180. doi:10.3109/10409238709083738

    Article  CAS  Google Scholar 

  • Burrells C, Williams PD, Southgate PJ, Crampton VO (1999) Immunological, physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins. Vet Immunol Immunopathol 72:277–288. doi:10.1016/S0165-2427(99)00143-9

    Article  CAS  PubMed  Google Scholar 

  • Cui YT, Liu B, Xie J, Xu P, Habte-Tsion H-M, Zhang YY (2014) Effect of heat stress and recovery on viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem 40:721–729. doi:10.1007/s10695-013-9879-2

    Article  CAS  PubMed  Google Scholar 

  • Currie S, Moyes CD, Tufts BL (2000) The effects of heat shock and acclimation temperature on hsp70 and hsp30 mRNA expression in rainbow trout: in vivo and in vitro comparisons. J Fish Biol 56:398–408. doi:10.1111/j.1095-8649.2000.tb02114.x

    Article  CAS  Google Scholar 

  • Dyer SD, Dickson KL, Zimmerman EG, Sanders BM (1991) Tissue-specific patterns of synthesis of heat-shock proteins and thermal tolerance of the fathead minnow (Pimephales promelas). Can J Zool 69:2021–2027. doi:10.1139/z91-282

    Article  CAS  Google Scholar 

  • Fangue NA, Hofmeister M, Schulte PM (2006) Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J Exp Biol 209:2859–2872. doi:10.1242/jeb.02260

    Article  CAS  PubMed  Google Scholar 

  • Hamdoun AM, Cheney DP, Cherr GN (2003) Phenotypic plasticity of HSP70 and HSP70 gene expression in the Pacific Oyster (Crassostrea gigas): implications for thermal limits and induction of thermal tolerance. Biol Bull 205:160–169

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo MC, Expósito A, Palma JM, de la Higuera M (2002) Oxidative stress generated by dietary Zn-deficiency: studies in rainbow trout (Oncorhynchus mykiss). Int J Biochem Cell B 34:183–193. doi:10.1016/S1357-2725(01)00105-4

    Article  CAS  Google Scholar 

  • Hightower LE (1991) Heat shock, stress proteins, chaperones and proteotoxicity. Cell 66:191–197. doi:10.1016/0092-8674(91)90611-2

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York

    Google Scholar 

  • Hofmann GE (1999) Ecologically relevant variation in induction and function of heat shock proteins in marine organisms. Am Zool 39:889–900. doi:10.1093/icb/39.6.889

    Article  CAS  Google Scholar 

  • Hokanson KEF, Kleiner CF, Thorslund TW (1977) Effects of constant temperatures and diel temperature-fluctuations on specific growth and mortality-rates and yield of juvenile rainbow trout, Salmo gairdneri. J Fish Res Board Can 34:639–648. doi:10.1139/f77-100

    Article  Google Scholar 

  • Hori TS, Gamperl AK, Afonso LOB, Johnson SC, Hubert S, Kimball J, Bowman S, Rise ML (2010) Heat-shock responsive genes identified and validated in atlantic cod (Gadus morhua) liver, head kidney and skeletal muscle using genomic techniques. BMC Genom 11:72. doi:10.1186/1471-2164-11-72

    Article  Google Scholar 

  • Huber K, Krötz-Fahning M, Hock B (2006) Respiratory burst as a biomarker for stress responses. Protoplasma 229:221–224. doi:10.1007/s00709-006-0206-y

    Article  CAS  PubMed  Google Scholar 

  • Kassahn K, Crozier R, Ward A, Stone G, Caley M (2007) From transcriptome to biological function: environmental stress in an ectothermic vertebrate, the coral reef fish Pomacentrus moluccensis. BMC Genom 8:358. doi:10.1186/1471-2164-8-358

    Article  Google Scholar 

  • Keefer ML, Peery CA, High B (2009) Behavioral thermoregulation and associated mortality trade-offs in migrating adult steelhead (Oncorhynchus mykiss): variability among sympatric populations. Can J Fish Aquat Sci 66:1734–1747. doi:10.1139/F09-131

    Article  Google Scholar 

  • Lele Z, Engel S, Krone PH (1997) hsp47 and hsp70 gene expression is differentially regulated in a stress- and tissue-specific manner in zebrafish embryos. Dev Genet 21:123–133

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP, Kruse VA (2004) Seasonal temperature compensation in the horse mussel, Modiolus modiolus: metabolic enzymes, oxidative stress and heat shock proteins. Comp Biochem Phys A 137:495–504. doi:10.1016/j.cbpb.2003.10.022

    Article  Google Scholar 

  • Li DP, Liu SY, Xie CX, Zhang XZ (2008) Effects of water temperature on serum content of reactive oxygen species and antioxidant defense system in Chinese sturgeon, Acipenser sinensis. Acta Hydrobiol Sin 32:327–332. doi:10.3724/SP.J.1035.2008.00327 (Chinese)

    Article  CAS  Google Scholar 

  • Lushchak VI, Bagnyukova TV (2006) Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes. Comp Biochem Physiol C 143:36–41. doi:10.1016/j.cbpc.2005.11.018

    Google Scholar 

  • Manchado M, Salas-Leiton E, Infante C, Ponce M, Asensio E, Crespo A, Zuaste E, Cañavate JP (2008) Molecular characterization, gene expression and transcriptional regulation of cytosolic HSP90 genes in the flatfish Senegalese sole (Solea senegalensis Kaup). Gene 416:77–84. doi:10.1016/j.gene.2008.03.007

    Article  CAS  PubMed  Google Scholar 

  • Mancino R, Di Pierro D, Varesi C, Cerulli A, Feraco A, Cedrone C, Pinazo-Duran MD, Coletta M, Nucci C (2011) Lipid peroxidation and total antioxidant capacity in vitreous, aqueous humor, and blood samples from patients with diabetic retinopathy. Mol Vis 17:1298–1304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews KR, Berg NH (1997) Rainbow trout responses to water temperature and dissolved oxygen stress in two southern California stream pools. J Fish Biol 50:50–67. doi:10.1111/j.1095-8649.1997.tb01339.x

    Article  Google Scholar 

  • Ming J, Xie J, Xu P, Liu W, Ge X, Liu B, He Y, Cheng Y, Zhou Q, Pan L (2010) Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish Shellfish Immunol 28:407–418. doi:10.1016/j.fsi.2009.11.018

    Article  CAS  PubMed  Google Scholar 

  • Nagata K (1996) Hsp47: a collagen-specific molecular chaperone. Trends Biochem Sci 21:23–26. doi:10.1016/S0968-0004(06)80023-X

    Article  CAS  Google Scholar 

  • Nagata K (1998) Expression and function of heat shock protein 47: a collagen-specific molecular chaperone in the endoplasmic reticulum. Matrix Biol 16:379–386. doi:10.1016/S0945-053X(98)90011-7

    Article  CAS  PubMed  Google Scholar 

  • Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P (1997) Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 43:1209–1214

    CAS  PubMed  Google Scholar 

  • Nikoskelainen S, Bylund G, Lilius EM (2004) Effect of environmental temperature on rainbow trout (Oncorhynchus mykiss) innate immunity. Dev Comp Immunol 28:581–592. doi:10.1016/j.dci.2003.10.003

    Article  CAS  PubMed  Google Scholar 

  • Ojima N, Yamashita M, Watabe S (2005) Quantitative mRNA expression profiling of heat-shock protein families in rainbow trout cells. Biochem Biophys Res Commun 329:51–57. doi:10.1016/j.bbrc.2005.01.097

    Article  CAS  PubMed  Google Scholar 

  • Parihar MS, Javeri T, Hemnani T, Dubey AK, Prakash P (1997) Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. J Therm Biol 22:151–156. doi:10.1016/S0306-4565(97)00006-5

    Article  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496. doi:10.1146/annurev.ge.27.120193.002253

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Sørhus E, Fiksdal IU, Espedal PG, Bergh Ø, Rødseth OM, Morton HC, Nerland AH (2009) Ontogeny of lymphoid organs and development of IgM-bearing cells in Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol 26:385–395. doi:10.1016/j.fsi.2008.11.018

    Article  CAS  PubMed  Google Scholar 

  • Pearson DS, Kulyk WM, Kelly GM, Krone PH (1996) Cloning and characterization of a cDNA encoding the collagen-binding stress protein hsp47 in zebrafish. DNA Cell Biol 15:263–272. doi:10.1089/dna.1996.15.263

    Article  CAS  PubMed  Google Scholar 

  • Pörtner HO (2001) Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146. doi:10.1007/s001140100216

    Article  PubMed  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97. doi:10.1126/science.1135471

    Article  PubMed  Google Scholar 

  • Ranford JC, Coates ARM, Henderson B (2000) Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones. Expert Rev Mol Med 2:1–17. doi:10.1017/S1462399400002015

    Article  CAS  PubMed  Google Scholar 

  • Rebl A, Verleih M, Köbis JM, Kühn C, Wimmers K, Köllner B, Goldammer T (2013) Transcriptome profiling of gill tissue in regionally bred and globally farmed rainbow trout strains reveals different strategies for coping with thermal stress. Mar Biotechnol 15:445–460. doi:10.1007/s10126-013-9501-8

    Article  CAS  PubMed  Google Scholar 

  • Rye HS, Roseman AM, Chen S, Furtak K, Fenton W, Saibil HR, Horwich AL (1999) GroEL–GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97:325–338. doi:10.1016/S0092-8674(00)80742-4

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Posthaus H, Busato A, Wahli T, Meier W, Burkhardt-Holm P (1998) Transient increase in chloride cell number and heat shock protein expression (hsp70) in brown trout (Salmo trutta fario) exposed to sudden temperature elevation. Biol chem 379:1227–1233. doi:10.1515/bchm.1998.379.10.1227

    Article  CAS  PubMed  Google Scholar 

  • Secombes CJ (1990) Isolation of salmonid macrophages and analysis of their killing activity. In: Stolen JS et al (eds) Techniques in Fish Immunology. SOS Publications, Fair Haven, pp 137–154

    Google Scholar 

  • Shi HN, Liu Z, Zhang JP, Kang YJ, Wang JF, Huang JQ, Wang WM (2015) Effect of heat stress on heat-shock protein (Hsp60) mRNA expression in rainbow trout Oncorhynchus mykiss. Genet Mol Biol 14:5280–5286. doi:10.4238/2015.May.18.20

    CAS  Google Scholar 

  • Smith TR, Tremblay GC, Bradley TM (1999) Characterization of the heat shock protein response of Atlantic salmon (Salmo salar). Fish Physiol Biochem 20:279–292. doi:10.1023/A:1007743329892

    Article  CAS  Google Scholar 

  • Tang Y, Zheng JX (2010) The mechanism of heat shock protein 47 in pulmonary fibrosis. Shandong Med J 50:117–118. doi:10.3969/j.issn.1002-266X.2010.49.078 (Chinese)

    CAS  Google Scholar 

  • Taylor JF, Needham MP, North BP, Morgan A, Thompson K, Migaud H (2007) The influence of ploidy on saltwater adaptation, acute stress response and immune function following seawater transfer in non-smolting rainbow trout. Gen Comp Endocrinol 152:314–325. doi:10.1016/j.ygcen.2007.02.029

    Article  CAS  PubMed  Google Scholar 

  • Tian ZH, Xu SG, Wang W, Hu HX, Ma GQ (2013) Effects of acute thermal stress on HSP70 mRNA, physiology and nonspecific immunity in Siberian sturgeon (Acipenser baerii). Acta Hydrobiol Sin 37:344–350. doi:10.7541/2013.25 (Chinese)

    CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40. doi:10.1016/j.cbi.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  • Varfolomeeva EY, Ivanov EI, Drobchenko EA, Semenova EV, Filatov MV (2010) Detection of inflammatory processes during various diseases by the method of flow cytofluorometry. Bull Exp Biol Med+ 149:485–489. doi:10.1007/s10517-010-0976-2

    Article  PubMed  Google Scholar 

  • Wang YB, Xu JB, Sheng LX, Zheng YC (2007) Field and laboratory investigations of the thermal influence on tissue-specific Hsp70 levels in common carp (Cyprinus carpio). Comp Biochem Physiol A 148:821–827. doi:10.1016/j.cbpa.2007.08.009

    Article  Google Scholar 

  • Wendelaar BSE (1997) The stress response in fish. Physiol Rev 77:591–625

    Google Scholar 

  • Wood LA, Brown IR, Youson JH (1999) Tissue and developmental variations in the heat shock response of sea lampreys (Petromyzon marinus): effects of an increase in acclimation temperature. Comp Biochem Physiol A 123:35–42. doi:10.1109/TMAG.2006.887680

    Article  Google Scholar 

  • Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74:139–162

    CAS  PubMed  Google Scholar 

  • Zhang CY, Xing W, Li TL, Ma ZH, Jiang N, Luo L, Li Y (2012) Effects of heat stress on non-specific immune parameters and HSP70 gene expression in Taisho Sanke koi (Cyprinus carpio). J Fish China 36:336–342. doi:10.3724/SP.J.1231.2012.27715 (Chinese)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 31460687) and the Fundamental Research Funds for the University of Gansu Province. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Z., Li, Z. et al. Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss . Fish Physiol Biochem 42, 701–710 (2016). https://doi.org/10.1007/s10695-015-0170-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0170-6

Keywords

Navigation