Skip to main content
Log in

Effects of ultraviolet A on the activity of two metabolic enzymes, DNA damage and lipid peroxidation during early developmental stages of the African catfish, Clarias gariepinus (Burchell, 1822)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Many ultraviolet-A (UVA)-induced biochemical and physiological changes are valid as biomarkers using aquatic species for detection of the degree of stress. Changes in the concentration and activities of enzymes, such as glucose-6-phosphate dehyderogenase (G6PDH), lactate dehyderogenase (LDH), DNA damage and lipid peroxidation (LPO), can be used as biomarkers to identify possible environmental contamination in fish. This study aimed to investigate the impact of UVA on the activity of the selected enzymes, DNA damage and LPO during early developmental stages of the African catfish Clarias gariepinus. Embryo hemogenates were used for measurements of G6PDH, LDH, DNA damage and LPO concentrations and activities spectrophotometrically at 37°C. The normal ontogenetic variations in enzyme activities, DNA damage and LPO of the early developmental stages (24–168 h-PFS; hours-post fertilization stage) were studied. There was a significant decrease in the activity of G6PDH till 120 h-PFS. Then after 120 h-PFS, the activity of such enzymes insignificantly increased toward higher stages. The LDH activity was recorded with a pattern of decrease till 96 h-PFS, followed by a significant increase toward 168 h-PFS. The polynomial pattern of variations in DNA damage and LPO was also evident. The patterns of the enzyme activities, corresponding DNA damage and LPO of the early ontogenetic stages under the influence of three different UVA doses (15, 30 and 60 min), were recorded. The pattern of variations in G6PDH activity in UVA-induced groups was similar to that of the control group with variation in the magnitude of such activity. In all treated groups, LDH activity decreased till 96 h-PFS, then increased till 168 h-PFS. Within each of the embryonic stages, the increase in UVA led to a significant increase in DNA damage. A significant increase in lipid peroxidation under UVA doses was recorded. The variability in number and molecular weight of proteins under exposure to UVA was evident, reflecting some of the genetic and transcriptional changes during exposure and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Plate 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alapetite C, Wachter T, Sage E, Moustacchi E (1996) Use of alkaline comet assay to detect DNA repair deficiencies in human fibroblasts exposed to UVC, UVB, UVA and gamma-rays. Int J Radiat Biol 69:359–369. doi:10.1080/095530096145922

    Article  CAS  Google Scholar 

  • Almeida JA, Novelli ELB, Silva MD, Alves R (2001) Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus. Environ Pollut 114:169–175

    Article  CAS  Google Scholar 

  • Andrew TEH, Jacob GS (2003) Epithelial activity of hexokinase and glucose-6-phosphate dehydrogenase in cultured bovine lenses recovering from pharmaceutical-induced optical damage. Mol Vis 9:594–600

    Google Scholar 

  • Ankley GT, Collyard SA, Monson PD, Kosian PA (1994) Influence of ultraviolet light on the toxicity of sediment contaminated with polycyclic aromatic hydrocarbons. Environ Conta Toxicol 13:1791–1796

    Article  CAS  Google Scholar 

  • Annie M, Marquis I, Gaboriau F, Santus R, Dubertret L, Morlière P (1993) Ultraviolet A-induced lipid peroxidation and antioxidant defense systems in cultured human skin fibroblasts. J Invest Dermatol 100:692–698. doi:10.1111/1523-1747.ep12472352

    Article  Google Scholar 

  • Armeni T, Damiani E, Battino M, Greci L, Principato G (2004) Lack of in vitro protection by a common sunscreen ingredient on UVA-induced cytotoxicity in keratinocytes. Toxic 203:165–178. doi:10.1016/j.tox.2004.06.008

    Article  CAS  Google Scholar 

  • Armstrong TN, Reimschuessel R, Bradly BP (2002) DNA damage, histological changes and DNA repair in larval Japanese medaka (Oryzias latipes) exposed to ultraviolet-B radiation. Aquat Toxicol 58:1–14

    Article  CAS  Google Scholar 

  • Berges JA, Ballantyne JS (1991) Size scaling of whole body maximal enzyme activities in aquatic crustaceans. Can J Fish Aquac Sci 48:2385–2394

    Article  CAS  Google Scholar 

  • Brian LD (2002) Sources and measurements of ultraviolet radiation. Methods 28(1):4–13. doi:10.1016/S1046-2023(02)00204-9

    Article  Google Scholar 

  • Browman HI, Vetter RD, Flodriguez CA, Cullen JJ, Davis RF, Lynn E, Pierre J (2003) Ultraviolet (280–400 nm)-induced DNA damage in the eggs and larvae of Calanus finmarchicus G. (Copepoda) and atlantic cod (Gadus morhua). Photochem Photobiol 77(4):397–404

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310. doi:10.1016/S0076-6879(78)52032-6

    Article  CAS  Google Scholar 

  • Castro-Pérez CA (2004) Effects of ultraviolet radiation exposure on the swimming performance and hematological parameters of tambaqui, colossoma macropomum. International Congress on the Biology of Fish, Tropical Hotel Resort, Manaus Brazil, August: 1–5

  • Ciereszko A, Tobie DW, Konrad D (2005) Analysis of DNA damage in sea lamprey (Petromyzon marinus) spermatozoa by UV, hydrogen peroxide, and the toxic antbisazir. Aquat Toxicol 73(2):128–138

    Article  CAS  Google Scholar 

  • Clarke ME, Calvi C, Domeier M, Edmonds M, Walsh PJ (1992) Effects of nutrition and temperature on metabolic enzyme activities in larval and juvenile red drum, Sciaenops ocellatus and lane snapper, Lutjanus synagris. Marine Biol 112:31–36

    CAS  Google Scholar 

  • Clydesdale GJ, Dandie GW, Muller HK (2001) Ultraviolet light induced injury: Immunological and inflammatory effects. Immunol Cell Biol 79(6):547–568. doi:10.1046/j.1440-1711.2001.01047.x

    Article  CAS  Google Scholar 

  • Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374:547–562

    Article  CAS  Google Scholar 

  • De Graaf GJ, Janssen H (1996) Artificial reproduction and pond rearing of the African catfish Clarias gariepinus in sub-Saharan Africa. FAO, Fish Tech Pap 362:1–73

    Google Scholar 

  • Degroot SJ (1987) Culture of Clarias species. Aquaculture 63:1–36. doi:10.1016/0044-8486(87)90056-1

    Article  Google Scholar 

  • Dong Q, Svoboda K, Tiersch TR, Monroe WT (2007) Photobiological effects of UVA and UVB light in zebrafish embryos: evidence for a competent photorepair system. J Photochem Photob B Biol 88:137–146. doi:10.1016/j.jphotobiol.2007.07.002

    Article  CAS  Google Scholar 

  • Douki T, Reynaud-Angelin A, Cadet J, Sage E (2003) Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochem 42:9221–9226. doi:10.1021/bi034593c

    Article  CAS  Google Scholar 

  • Dovrat A, Weinreb O (1995) Recovery of lens optics and epithelial enzymes after ultraviolet A radiation. Invest Ophthalmol Vis Sci 36:12

    Google Scholar 

  • Elumalai M, Antunes C, Guilhermino L (2002) Effects of single metals and their mixtures on selected enzymes of Carcinus maenas. Water Air Soil Pollut 141:273–280

    Article  CAS  Google Scholar 

  • Estey T, Cantore M, Weston PA, Carpenter JF, Petrash JM, Vasiliou V (2007) Mechanisms involved in the protection of UV-induced protein inactivation by the corneal crystallin ALDH3A1. J Biol Chem 282(7):4382–4392

    Article  CAS  Google Scholar 

  • Fu Y, Jin X, Wei S, Lin H, Kacew S (2000) Ultraviolet radiation and reactive oxygen generation as inducers of keratinocyte apoptosis: protective role of tea polyphenols. J Toxicol Environ Health 61(3):177–188

    Article  CAS  Google Scholar 

  • Gaboriau F, Morliére P, Marquis I, Moysan A, Géze M, Dubertret L (1993) Membrane damage induced in cultured human skin fibroblasts by UVA irradiation. Photochem Photobiol 58:515–520. doi:10.1111/j.1751-1097.1993.tb04924.x

    Article  CAS  Google Scholar 

  • Gallagher RP, Lee TK (2006) Adverse effects of ultraviolet radiation: a brief review. Prog Biophys Mol Biol 92:119–131. doi:10.1016/j.pbiomolbio.2006.02.011

    Article  CAS  Google Scholar 

  • Gantchev TG, van Lier JE (1995) Catalase inactivation following photosensitization with tetrasulfonated metallophtalocyanines. Photochem Photobiol 62:123–134. doi:10.1111/j.1751-1097.1995.tb05248.x

    Article  CAS  Google Scholar 

  • Gornall AC, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the Biuret reaction. J Biol Chem 177:751–766

    CAS  PubMed  Google Scholar 

  • Häkkinen J, Oikari A (2004) A field methodology to study effects of UV radiation on fish larvae. Water Res 38:2891–2897

    Article  Google Scholar 

  • Jarvis RB, Knowles JF (2003) DNA damage in zebrafish larvae induced by exposure to low-dose rate gamma-radiation: detection by the alkaline comet assay. Mutat Res Genet Toxicol Environ Mutagen 541:63–69

    Article  CAS  Google Scholar 

  • Jochen G, Lidia L, Hubert T, Ute R, Claus U (1996) Isolation, sequencing and overproduction of the single-stranded DNA binding protein from Pseudomonas aeruginosa PAO. Gene 182:137–143. doi:10.1016/S0378-1119(96)00535-5

    Article  Google Scholar 

  • Kachmar JF, Moss DW ( 1976) In: Tietz NW (ed) Fundamentals of clinical chemistry, 2nd edn. WB Saunders, Philadelphia, p 652

  • Kevin RA (1994) Impact of ozone depletion on phytoplankton growth in the Southern Ocean: large-scale spatial and temporal variability. Mar Ecolo Prog 114:1–12. doi:10.3354/meps114001

    Article  Google Scholar 

  • Kielbassa C, Len R, Bernd E (1997) Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18:811–816

    Article  CAS  Google Scholar 

  • Kino K, Sugiyama H (2005) UVR-induced G–C to C–G transversions from oxidative DNA damage. Mutat Res 571:33–42

    Article  CAS  Google Scholar 

  • Kligman LH, Akin FJ, Kligman AM (1983) Sunscreens promote repair of ultraviolet radiation-induced dermal damage. J Investig Dermatol 81:98–102

    Article  CAS  Google Scholar 

  • Kornberg A (1955) Lactic dehydrogenase of muscle. In: Lowestein JM (ed) Methods in enzymology. Academic Press, New York, pp 441–442

    Google Scholar 

  • Kurita-Ochiai T, Fukushima K, Ochiai K (1999) Lipopolysaccharide stimulates butyric acid-induced apoptosis in human peripheral blood mononuclear cells. Infect Immun 67:22–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227: 680–685

    Article  CAS  Google Scholar 

  • Lee SM, Koh H, Park D, Song BJ, Huh T, Park J (2002) Cytosolic NADP+-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32(11):1185–1196

    Article  CAS  Google Scholar 

  • Legrand C, Bour JM, Jacob C, Capiaumont J, Martial J, Marc A, Wudtke M, Kretzmer G, Demangel C, Duval D, Hache J (1992) Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. J Biotechnol 25:231–243

    Article  CAS  Google Scholar 

  • Lemos D, Salomon M, Gomes V, Phan V, Buchholz E (2003) Citrate synthase and pyruvate kinase activities during early life stages of the shrimp Farfantepenaeus paulensis (Crustacea, Decapoda, Penaeidae): effects of development and temperature. Comp Biochem Physiol B 135:707–719

    Article  CAS  Google Scholar 

  • Little EE, Cleveland L, Hurtubise R, Barron MG (2000) Assessment of the photoenhanced toxicity of a weathered petroleum to the tidewater silverside. Environ Toxicol Chem 19:926–932. doi:10.1897/1551-5028(2000)019<0926:AOTPTO>2.3.CO;2

    Article  CAS  Google Scholar 

  • Losey GS, Hydes D (1998) The UV visual world of fishes. J Fish Biol 54:921–945. doi:10.1111/j.1095-8649.1999.tb00848.x

    Article  Google Scholar 

  • Mallakin A, McConkey BJ, Miao G, Mckibben B, Snieckus V, Dixon DG, Greenberg BM (1999) Impacts of structural photomodification on the toxicity of environmental contaminants: anthracene photooxidation products. Ecotoxic Envir saf 43:204–212

    Article  CAS  Google Scholar 

  • McCloskey JT, Oris JT (1993) Effect of anthracene and solar ultraviolet radiation exposure on gill ATPase and selected hematologic measurements in the bluegill sunfish (Lepomis macrochirus). Aquat Toxicol 24:207–218. doi:10.1016/0166-445X(93)90072-9

    Article  CAS  Google Scholar 

  • McFadzen I, Baynes S, Hallam J, Beesley A, Lowe D (2000) Histopathology of the skin of UV-B irradiated sole (Solea solea) and turbot (Scophthalmus maximus) larvae. Marine Environ Res 50:273–277

    Article  CAS  Google Scholar 

  • Mekkawy IAA, Lashein FE (2003) The effect of lead and cadmium on LDH and G-6-PDH isozyme patterns exhibited during the early embryonic development of the teleost fish, Ctenopharyngodon idellus with emphasis on the corresponding morphological variations. The Big Fish Bang, the proceeding of the 26th Annual Larval Fish Conference (LFC2002), 22-26 July, 2002, Bergen, Norway, edited by: Howard I. Browman and Anne Berit Skiftesvik

  • Merwald H, Klosner G, Kokesch C, Der-Petrossian M, Honigsmann H, Trautinger F (2005) UVA-induced oxidative damage and cytotoxicity depend on the mode of exposure. J Photochem Photob B Biol 79(3):197–207. doi:10.1016/j.jphotobiol.2005.01.002

    Article  CAS  Google Scholar 

  • Morlière P, Annie M, René S, Gabriele H, Jean-Claude M, Louis D (1991) UVA-induced lipid peroxidation in cultured human fibroblasts. BBA Lipids Lipid Metab 1084(3):261–268

    Article  Google Scholar 

  • Nathanailides C (1996) Metabolic specialization of muscle during development in cold water and warm water fish species exposed to different thermal conditions. Can J Fish Aquat Sci 53:2147–2155

    Article  Google Scholar 

  • Nguyen LTH, Janssen CR (2002) Embryo-larval toxicity tests with the African catfish (Clarias gariepinus): comparative sensitivity of endpoints. Arch Environ Contam Toxicol 42:256–262. doi:10.1007/s00244-001-0007-4

    Article  CAS  Google Scholar 

  • Obermüller B, Puntarrulo S, Abele D (2007) UV-tolerance and instantaneous physiological stress responses of two Antarctic amphipod species Gondogeneia antarctica and Djerboa furcipes during exposure to UV radiation. Mar Environ Res 64:267–285. doi:10.1016/j.marenvres.2007.02.001

    Article  Google Scholar 

  • Osman AG, Mekkawy IAA, Verreth J, Kirschbaum F (2007a) Effects of lead nitrate on the activity of metabolic enzymes during early developmental stages of the African catfish, Clarias gariepinus (Burchell, 1822). Fish Physiol Biochem 33:1–13. doi:10.1007/s10695-006-9111-8

    Article  CAS  Google Scholar 

  • Osman AG, Wuertz S, Mekkawy IAA, Exner H, Kirschbaum F (2007b) Lead induced malformations in embryos of the African catfish Clarias gariepinus (Burchell, 1822). Environ Toxicol 22(4):375–389. doi:10.1002/tox.20272

    Article  CAS  Google Scholar 

  • Osman AG, Mekkawy IAA, Verreth J, Wuertz S, Kloas W, Kirschbaum F (2008) Monitoring of DNA breakage in embryonic stages of the African catfish Clarias gariepinus (Burchell, 1822) after exposure to lead nitrate using alkaline comet assay. Environ Toxicol 23:679–687. doi:10.1002/tox.20373

    Article  CAS  Google Scholar 

  • Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S (2003) Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Sci Total Environ 309:105–115

    Article  CAS  Google Scholar 

  • Pelletier D, Blier PU, Dutil JD, Guderley H (1995) How should enzyme activities be used in fish growth studies? J Exp Biol 198:1493–1497

    CAS  PubMed  Google Scholar 

  • Petersen AB, Gniadecki R, Vicanova J, Thorn T, Wulf HC (2000) Hydrogen peroxide is responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT keratinocytes. J photo photob B Biology 59:123–131

    Article  CAS  Google Scholar 

  • Punnonen K, Puntala A, Ansen CT, Ahotupa M (1991) UVB irradiation induces lipid peroxidation and reduced antioxidant enzyme activities in human keratinocytes in vitro. Acta Dermato-venerologica 1:239–273

    Google Scholar 

  • Rosety-Rodriguez M, Ordonez F, Rosety I, Rosety J, Rosery M (2005) Erythrocyte antioxidant enzymes of gilthead as early-warning bio-indicators of oxidative stress induced by malathion. Haematology 8:237–240

    CAS  Google Scholar 

  • Rozema J, Van Geel B, Bjorn LO, Lean J, Madronich S (2002) Toward solving the UV puzzle. Science 296:1621–1622. doi:10.1126/science.1070024

    Article  CAS  Google Scholar 

  • Salo H, Jokinen E, Markkula S, Aaltonen T, Penttilä H (2000) Comparative effects of UVA and UVB irradiation on the immune system of fish. J photo photob B. Biology 56:154–162

    Article  CAS  Google Scholar 

  • Sastry KV, Gupta PK (1980) Alterations in the activities of a few dehydrogenases in the digestive system of 2 teleost fishes exposed to lead nitrate. Ecotoxicol Environ Saf 4:232–239

    Article  CAS  Google Scholar 

  • Segner H, Verreth J (1995) Metabolic enzyme activities in larvae of the African catfish, Clarias gariepinus—changes in relation to age and nutrition. Fish Physiol Biochem 14:385–398

    Article  CAS  Google Scholar 

  • Setlow RB, Woodhead AD (1994) Temporal changes in the incidence of malignant melanoma: explanation from action spectra. Mutat Res 307:365–374. doi:10.1016/0027-5107(94)90310-7

    Article  CAS  Google Scholar 

  • Setlow RB, Gist E, Thompson K, woodhead Avril D (1993) Wavelengths effective in induction of malignant melanoma. Genetics 90:6666–6670

    CAS  Google Scholar 

  • Singh RK, Sharma B (1998) Carbofuran-induced biochemical changes in Clarias batrachus. Pest Sci 53:285–290

    Article  CAS  Google Scholar 

  • Singh SS, Pankaj k, Ashwani k (2006) Ultraviolet radiation stress: molecular and physiological adaptations in trees in A biotic stress tolerance in plants Springer etherlands editer. doi:10.1007/14020-4389

  • Sinha RP, Häder D (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    Article  CAS  Google Scholar 

  • Societe Francaise de Biologie Clinique (1982) Enzymology commission. Recommendations. Ann Biol Clin (Paris) 40:87–164

    Google Scholar 

  • Somero S, Childress J (1985) Scaling of oxidative and glycolytic enzyme activities in fish muscle. Springer, Berlin

    Google Scholar 

  • Stephensen E, Svavarsson J, Sturve J, Ericson G, Adolfsson-Erici M, Förlin L (2000) Biochemical indicators of pollution exposure in shorthorn sculpin (Myoxocephalus scorpius), caught in four harbours on the southwest coast of Iceland. Aquat Toxicol 48:431–442

    Article  CAS  Google Scholar 

  • Thomas E, Ursula F, Rainhardt O (2001) DNA damage and apoptosis in mononuclear cells from glucose-6-phosphate dehydrogenase-deficient patients (G6PD Aachen variant) after UV irradiation. J Leukoc Biol 69:340–342

    Google Scholar 

  • Tsubai T, Matsuo M (2002) Ultraviolet light-induced changes in the glucose 6-phosphate dehydrogenase activity of porcine corneas. Cornea 21(5):495–500. doi:10.1097/00003226-200207000-00011

    Article  Google Scholar 

  • Utley HC, Bernheim F, Hachslien P (1967) Effects of sulfhydryl reagent on peroxidation in microsome. Arch Biochem Biophys 260:521–531

    Google Scholar 

  • Volckaert FAM, Hellemans BA, Galbusera P, Ollevier F, Sekkali B, Belayew A (1994) Replication, expression and fate of foreign DNA during embryonic and larval development of the African catfish Clarias gariepinus. Mol Mar Biol Biotechnol 3:57–69

    CAS  PubMed  Google Scholar 

  • Weatherhead EC, Stevermer A (2001) Ultraviolet radiation. In: Encyclopedia of global environmental change, vol 1. John Wiley and Sons Inc

  • Weatherhead EC, George CT, Gregory CR, John EF, John JD, Dongseok C (1997) Analysis of long-term behavior of ultraviolet radiation measured by Robertson-Berger meters at 14 sites in the United States. J Geophys Res 102(d7):8737–8754. doi:10.1029/96JD03590

    Article  CAS  Google Scholar 

  • Weatherhead SC, Haniffa M, Lawrence CM (2007) Melanomas arising from naevi and de novo melanomas does origin matter? Briti J derma 156:72–86

    Article  CAS  Google Scholar 

  • WHO (2003) Climate change and human health—risks and responses—summary. World Health Organization, Geneva

    Google Scholar 

  • Williamson CE (1995) What role does UV-B radiation play in freshwater ecosystems? Limno oceanog 40(2):386–392

    Article  Google Scholar 

  • Williamson CE, Metgar SL, Lovera PA, Moeller RE (1997) Solar ultraviolet radiation and the spawning habitat of yellow Perch, Perca flavescens. Ecol Appl 7(3):1017–1023. doi:10.1890/1051-0761(1997)007[1017:SURATS]2.0.CO;2

    Article  Google Scholar 

  • Winckler K, Fidhiany L (1996) Significant influence of UVA on the general metabolism in the growing Ciclid fish, Cichlasoma nigrofasciatum. J photochem photob B. Biology 33:131–135

    Article  CAS  Google Scholar 

  • Wu RSS, Lam PKS (1997) Glucose-6-phosphate dehydrogenase and lactate dehydrogenase in the green-lipped mussel (Perna viridis). Possible biomarker for hypoxia in the marine environment. Water Res 31:2797–2801

    Article  CAS  Google Scholar 

  • Yeh S, Wang W, Huang C, Hu M (2005) Pro-oxidative effect of β-carotene and the interaction with flavonoids on UVA-induced DNA strand breaks in mouse fibroblast C3H10T1/2 cells. J Nutr Biochem 16(12):729–735. doi:10.1016/j.jnutbio.2005.03.012

    Article  CAS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa El-Din H. Sayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mekkawy, I.A.A., Mahmoud, U.M., Osman, A.G. et al. Effects of ultraviolet A on the activity of two metabolic enzymes, DNA damage and lipid peroxidation during early developmental stages of the African catfish, Clarias gariepinus (Burchell, 1822). Fish Physiol Biochem 36, 605–626 (2010). https://doi.org/10.1007/s10695-009-9334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-009-9334-6

Keywords

Navigation